The local distribution of the number of small prime factors: variation of the classical theme
We obtain uniform estimates for N k ( x , y ) , the number of positive integers n up to x for which ω y ( n ) = k , where ω y ( n ) is the number of distinct prime factors of n which are < y . The motivation for this problem is an observation due to the first author in 2015 that for certain range...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2020, Vol.51 (1), p.117-151 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We obtain uniform estimates for
N
k
(
x
,
y
)
, the number of positive integers
n
up to
x
for which
ω
y
(
n
)
=
k
, where
ω
y
(
n
)
is the number of distinct prime factors of
n
which are
<
y
. The motivation for this problem is an observation due to the first author in 2015 that for certain ranges of
y
, the asymptotic behavior of
N
k
(
x
,
y
)
is different from the classical situation concerning
N
k
(
x
,
x
)
studied by Sathe and Selberg. We demonstrate this variation of the classical theme; to estimate
N
k
(
x
,
y
)
we study the sum
S
z
(
x
,
y
)
=
∑
n
≤
x
z
ω
y
(
n
)
for
R
e
(
z
)
>
0
by the Buchstab–de Bruijn method. We also utilize a certain recent result of Tenenbaum to complete our asymptotic analysis. |
---|---|
ISSN: | 1382-4090 1572-9303 |
DOI: | 10.1007/s11139-019-00151-2 |