Fractional Sturm–Liouville eigenvalue problems, I

We introduce and present the general solution of three two-term fractional differential equations of mixed Caputo/Riemann–Liouville type. We then solve a Dirichlet type Sturm–Liouville eigenvalue problem for a fractional differential equation derived from a special composition of a Caputo and a Riem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2020-04, Vol.114 (2), Article 46
Hauptverfasser: Dehghan, M., Mingarelli, A. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas
container_volume 114
creator Dehghan, M.
Mingarelli, A. B.
description We introduce and present the general solution of three two-term fractional differential equations of mixed Caputo/Riemann–Liouville type. We then solve a Dirichlet type Sturm–Liouville eigenvalue problem for a fractional differential equation derived from a special composition of a Caputo and a Riemann–Liouville operator on a finite interval where the boundary conditions are induced by evaluating Riemann–Liouville integrals at those end-points. For each 1 / 2 < α < 1 it is shown that there is a finite number of real eigenvalues, an infinite number of non-real eigenvalues, that the number of such real eigenvalues grows without bound as α → 1 - , and that the fractional operator converges to an ordinary two term Sturm–Liouville operator as α → 1 - with Dirichlet boundary conditions. Finally, two-sided estimates as to their location are provided as is their asymptotic behavior as a function of α .
doi_str_mv 10.1007/s13398-019-00756-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2332098984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2332098984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-92b59b1c885ec2ca2a9d401e75558afb778e5673b4803f8aa935e742947d45a83</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWGpfwNOCV6NJZtMkRynWFhY8qOeQ3c6WLfunJrsFb76Db-iTmHYFb85lZuCbbz5-hFxzdscZU_eBAxhNGTc0rnJO9RmZcKkM5ZLJ89OsqQIGl2QWwo7FAp5qpiYElt4VfdW1rk5e-sE3359fWdUNh6quMcFqi-3B1QMme9_lNTbhNllfkYvS1QFnv31K3paPr4sVzZ6f1ouHjBbATU-NyKXJeaG1xEIUTjizSRlHJaXUrsyV0ijnCvKYBErtnAGJKhUmVZtUOg1TcjP6xt_vA4be7rrBx6TBCgDBjDY6jSoxqgrfheCxtHtfNc5_WM7skY8d-djIx5742KM1jEchitst-j_rf65-AC5LZ3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2332098984</pqid></control><display><type>article</type><title>Fractional Sturm–Liouville eigenvalue problems, I</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dehghan, M. ; Mingarelli, A. B.</creator><creatorcontrib>Dehghan, M. ; Mingarelli, A. B.</creatorcontrib><description>We introduce and present the general solution of three two-term fractional differential equations of mixed Caputo/Riemann–Liouville type. We then solve a Dirichlet type Sturm–Liouville eigenvalue problem for a fractional differential equation derived from a special composition of a Caputo and a Riemann–Liouville operator on a finite interval where the boundary conditions are induced by evaluating Riemann–Liouville integrals at those end-points. For each 1 / 2 &lt; α &lt; 1 it is shown that there is a finite number of real eigenvalues, an infinite number of non-real eigenvalues, that the number of such real eigenvalues grows without bound as α → 1 - , and that the fractional operator converges to an ordinary two term Sturm–Liouville operator as α → 1 - with Dirichlet boundary conditions. Finally, two-sided estimates as to their location are provided as is their asymptotic behavior as a function of α .</description><identifier>ISSN: 1578-7303</identifier><identifier>EISSN: 1579-1505</identifier><identifier>DOI: 10.1007/s13398-019-00756-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Asymptotic properties ; Boundary conditions ; Differential equations ; Dirichlet problem ; Eigenvalues ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Original Paper ; Theoretical</subject><ispartof>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2020-04, Vol.114 (2), Article 46</ispartof><rights>The Royal Academy of Sciences, Madrid 2020</rights><rights>The Royal Academy of Sciences, Madrid 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-92b59b1c885ec2ca2a9d401e75558afb778e5673b4803f8aa935e742947d45a83</citedby><cites>FETCH-LOGICAL-c319t-92b59b1c885ec2ca2a9d401e75558afb778e5673b4803f8aa935e742947d45a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13398-019-00756-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13398-019-00756-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Dehghan, M.</creatorcontrib><creatorcontrib>Mingarelli, A. B.</creatorcontrib><title>Fractional Sturm–Liouville eigenvalue problems, I</title><title>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</title><addtitle>RACSAM</addtitle><description>We introduce and present the general solution of three two-term fractional differential equations of mixed Caputo/Riemann–Liouville type. We then solve a Dirichlet type Sturm–Liouville eigenvalue problem for a fractional differential equation derived from a special composition of a Caputo and a Riemann–Liouville operator on a finite interval where the boundary conditions are induced by evaluating Riemann–Liouville integrals at those end-points. For each 1 / 2 &lt; α &lt; 1 it is shown that there is a finite number of real eigenvalues, an infinite number of non-real eigenvalues, that the number of such real eigenvalues grows without bound as α → 1 - , and that the fractional operator converges to an ordinary two term Sturm–Liouville operator as α → 1 - with Dirichlet boundary conditions. Finally, two-sided estimates as to their location are provided as is their asymptotic behavior as a function of α .</description><subject>Applications of Mathematics</subject><subject>Asymptotic properties</subject><subject>Boundary conditions</subject><subject>Differential equations</subject><subject>Dirichlet problem</subject><subject>Eigenvalues</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Original Paper</subject><subject>Theoretical</subject><issn>1578-7303</issn><issn>1579-1505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQxoMoWGpfwNOCV6NJZtMkRynWFhY8qOeQ3c6WLfunJrsFb76Db-iTmHYFb85lZuCbbz5-hFxzdscZU_eBAxhNGTc0rnJO9RmZcKkM5ZLJ89OsqQIGl2QWwo7FAp5qpiYElt4VfdW1rk5e-sE3359fWdUNh6quMcFqi-3B1QMme9_lNTbhNllfkYvS1QFnv31K3paPr4sVzZ6f1ouHjBbATU-NyKXJeaG1xEIUTjizSRlHJaXUrsyV0ijnCvKYBErtnAGJKhUmVZtUOg1TcjP6xt_vA4be7rrBx6TBCgDBjDY6jSoxqgrfheCxtHtfNc5_WM7skY8d-djIx5742KM1jEchitst-j_rf65-AC5LZ3Q</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Dehghan, M.</creator><creator>Mingarelli, A. B.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200401</creationdate><title>Fractional Sturm–Liouville eigenvalue problems, I</title><author>Dehghan, M. ; Mingarelli, A. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-92b59b1c885ec2ca2a9d401e75558afb778e5673b4803f8aa935e742947d45a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Asymptotic properties</topic><topic>Boundary conditions</topic><topic>Differential equations</topic><topic>Dirichlet problem</topic><topic>Eigenvalues</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Original Paper</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dehghan, M.</creatorcontrib><creatorcontrib>Mingarelli, A. B.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dehghan, M.</au><au>Mingarelli, A. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional Sturm–Liouville eigenvalue problems, I</atitle><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle><stitle>RACSAM</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>114</volume><issue>2</issue><artnum>46</artnum><issn>1578-7303</issn><eissn>1579-1505</eissn><abstract>We introduce and present the general solution of three two-term fractional differential equations of mixed Caputo/Riemann–Liouville type. We then solve a Dirichlet type Sturm–Liouville eigenvalue problem for a fractional differential equation derived from a special composition of a Caputo and a Riemann–Liouville operator on a finite interval where the boundary conditions are induced by evaluating Riemann–Liouville integrals at those end-points. For each 1 / 2 &lt; α &lt; 1 it is shown that there is a finite number of real eigenvalues, an infinite number of non-real eigenvalues, that the number of such real eigenvalues grows without bound as α → 1 - , and that the fractional operator converges to an ordinary two term Sturm–Liouville operator as α → 1 - with Dirichlet boundary conditions. Finally, two-sided estimates as to their location are provided as is their asymptotic behavior as a function of α .</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13398-019-00756-8</doi></addata></record>
fulltext fulltext
identifier ISSN: 1578-7303
ispartof Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2020-04, Vol.114 (2), Article 46
issn 1578-7303
1579-1505
language eng
recordid cdi_proquest_journals_2332098984
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Asymptotic properties
Boundary conditions
Differential equations
Dirichlet problem
Eigenvalues
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Operators (mathematics)
Original Paper
Theoretical
title Fractional Sturm–Liouville eigenvalue problems, I
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T04%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20Sturm%E2%80%93Liouville%20eigenvalue%20problems,%20I&rft.jtitle=Revista%20de%20la%20Real%20Academia%20de%20Ciencias%20Exactas,%20F%C3%ADsicas%20y%20Naturales.%20Serie%20A,%20Matem%C3%A1ticas&rft.au=Dehghan,%20M.&rft.date=2020-04-01&rft.volume=114&rft.issue=2&rft.artnum=46&rft.issn=1578-7303&rft.eissn=1579-1505&rft_id=info:doi/10.1007/s13398-019-00756-8&rft_dat=%3Cproquest_cross%3E2332098984%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2332098984&rft_id=info:pmid/&rfr_iscdi=true