Fractional Sturm–Liouville eigenvalue problems, I
We introduce and present the general solution of three two-term fractional differential equations of mixed Caputo/Riemann–Liouville type. We then solve a Dirichlet type Sturm–Liouville eigenvalue problem for a fractional differential equation derived from a special composition of a Caputo and a Riem...
Gespeichert in:
Veröffentlicht in: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2020-04, Vol.114 (2), Article 46 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas |
container_volume | 114 |
creator | Dehghan, M. Mingarelli, A. B. |
description | We introduce and present the general solution of three two-term fractional differential equations of mixed Caputo/Riemann–Liouville type. We then solve a Dirichlet type Sturm–Liouville eigenvalue problem for a fractional differential equation derived from a special composition of a Caputo and a Riemann–Liouville operator on a finite interval where the boundary conditions are induced by evaluating Riemann–Liouville integrals at those end-points. For each
1
/
2
<
α
<
1
it is shown that there is a finite number of real eigenvalues, an infinite number of non-real eigenvalues, that the number of such real eigenvalues grows without bound as
α
→
1
-
, and that the fractional operator converges to an ordinary two term Sturm–Liouville operator as
α
→
1
-
with Dirichlet boundary conditions. Finally, two-sided estimates as to their location are provided as is their asymptotic behavior as a function of
α
. |
doi_str_mv | 10.1007/s13398-019-00756-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2332098984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2332098984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-92b59b1c885ec2ca2a9d401e75558afb778e5673b4803f8aa935e742947d45a83</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWGpfwNOCV6NJZtMkRynWFhY8qOeQ3c6WLfunJrsFb76Db-iTmHYFb85lZuCbbz5-hFxzdscZU_eBAxhNGTc0rnJO9RmZcKkM5ZLJ89OsqQIGl2QWwo7FAp5qpiYElt4VfdW1rk5e-sE3359fWdUNh6quMcFqi-3B1QMme9_lNTbhNllfkYvS1QFnv31K3paPr4sVzZ6f1ouHjBbATU-NyKXJeaG1xEIUTjizSRlHJaXUrsyV0ijnCvKYBErtnAGJKhUmVZtUOg1TcjP6xt_vA4be7rrBx6TBCgDBjDY6jSoxqgrfheCxtHtfNc5_WM7skY8d-djIx5742KM1jEchitst-j_rf65-AC5LZ3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2332098984</pqid></control><display><type>article</type><title>Fractional Sturm–Liouville eigenvalue problems, I</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dehghan, M. ; Mingarelli, A. B.</creator><creatorcontrib>Dehghan, M. ; Mingarelli, A. B.</creatorcontrib><description>We introduce and present the general solution of three two-term fractional differential equations of mixed Caputo/Riemann–Liouville type. We then solve a Dirichlet type Sturm–Liouville eigenvalue problem for a fractional differential equation derived from a special composition of a Caputo and a Riemann–Liouville operator on a finite interval where the boundary conditions are induced by evaluating Riemann–Liouville integrals at those end-points. For each
1
/
2
<
α
<
1
it is shown that there is a finite number of real eigenvalues, an infinite number of non-real eigenvalues, that the number of such real eigenvalues grows without bound as
α
→
1
-
, and that the fractional operator converges to an ordinary two term Sturm–Liouville operator as
α
→
1
-
with Dirichlet boundary conditions. Finally, two-sided estimates as to their location are provided as is their asymptotic behavior as a function of
α
.</description><identifier>ISSN: 1578-7303</identifier><identifier>EISSN: 1579-1505</identifier><identifier>DOI: 10.1007/s13398-019-00756-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Asymptotic properties ; Boundary conditions ; Differential equations ; Dirichlet problem ; Eigenvalues ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Original Paper ; Theoretical</subject><ispartof>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2020-04, Vol.114 (2), Article 46</ispartof><rights>The Royal Academy of Sciences, Madrid 2020</rights><rights>The Royal Academy of Sciences, Madrid 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-92b59b1c885ec2ca2a9d401e75558afb778e5673b4803f8aa935e742947d45a83</citedby><cites>FETCH-LOGICAL-c319t-92b59b1c885ec2ca2a9d401e75558afb778e5673b4803f8aa935e742947d45a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13398-019-00756-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13398-019-00756-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Dehghan, M.</creatorcontrib><creatorcontrib>Mingarelli, A. B.</creatorcontrib><title>Fractional Sturm–Liouville eigenvalue problems, I</title><title>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</title><addtitle>RACSAM</addtitle><description>We introduce and present the general solution of three two-term fractional differential equations of mixed Caputo/Riemann–Liouville type. We then solve a Dirichlet type Sturm–Liouville eigenvalue problem for a fractional differential equation derived from a special composition of a Caputo and a Riemann–Liouville operator on a finite interval where the boundary conditions are induced by evaluating Riemann–Liouville integrals at those end-points. For each
1
/
2
<
α
<
1
it is shown that there is a finite number of real eigenvalues, an infinite number of non-real eigenvalues, that the number of such real eigenvalues grows without bound as
α
→
1
-
, and that the fractional operator converges to an ordinary two term Sturm–Liouville operator as
α
→
1
-
with Dirichlet boundary conditions. Finally, two-sided estimates as to their location are provided as is their asymptotic behavior as a function of
α
.</description><subject>Applications of Mathematics</subject><subject>Asymptotic properties</subject><subject>Boundary conditions</subject><subject>Differential equations</subject><subject>Dirichlet problem</subject><subject>Eigenvalues</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Original Paper</subject><subject>Theoretical</subject><issn>1578-7303</issn><issn>1579-1505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQxoMoWGpfwNOCV6NJZtMkRynWFhY8qOeQ3c6WLfunJrsFb76Db-iTmHYFb85lZuCbbz5-hFxzdscZU_eBAxhNGTc0rnJO9RmZcKkM5ZLJ89OsqQIGl2QWwo7FAp5qpiYElt4VfdW1rk5e-sE3359fWdUNh6quMcFqi-3B1QMme9_lNTbhNllfkYvS1QFnv31K3paPr4sVzZ6f1ouHjBbATU-NyKXJeaG1xEIUTjizSRlHJaXUrsyV0ijnCvKYBErtnAGJKhUmVZtUOg1TcjP6xt_vA4be7rrBx6TBCgDBjDY6jSoxqgrfheCxtHtfNc5_WM7skY8d-djIx5742KM1jEchitst-j_rf65-AC5LZ3Q</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Dehghan, M.</creator><creator>Mingarelli, A. B.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200401</creationdate><title>Fractional Sturm–Liouville eigenvalue problems, I</title><author>Dehghan, M. ; Mingarelli, A. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-92b59b1c885ec2ca2a9d401e75558afb778e5673b4803f8aa935e742947d45a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Asymptotic properties</topic><topic>Boundary conditions</topic><topic>Differential equations</topic><topic>Dirichlet problem</topic><topic>Eigenvalues</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Original Paper</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dehghan, M.</creatorcontrib><creatorcontrib>Mingarelli, A. B.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dehghan, M.</au><au>Mingarelli, A. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional Sturm–Liouville eigenvalue problems, I</atitle><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle><stitle>RACSAM</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>114</volume><issue>2</issue><artnum>46</artnum><issn>1578-7303</issn><eissn>1579-1505</eissn><abstract>We introduce and present the general solution of three two-term fractional differential equations of mixed Caputo/Riemann–Liouville type. We then solve a Dirichlet type Sturm–Liouville eigenvalue problem for a fractional differential equation derived from a special composition of a Caputo and a Riemann–Liouville operator on a finite interval where the boundary conditions are induced by evaluating Riemann–Liouville integrals at those end-points. For each
1
/
2
<
α
<
1
it is shown that there is a finite number of real eigenvalues, an infinite number of non-real eigenvalues, that the number of such real eigenvalues grows without bound as
α
→
1
-
, and that the fractional operator converges to an ordinary two term Sturm–Liouville operator as
α
→
1
-
with Dirichlet boundary conditions. Finally, two-sided estimates as to their location are provided as is their asymptotic behavior as a function of
α
.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13398-019-00756-8</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1578-7303 |
ispartof | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2020-04, Vol.114 (2), Article 46 |
issn | 1578-7303 1579-1505 |
language | eng |
recordid | cdi_proquest_journals_2332098984 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Asymptotic properties Boundary conditions Differential equations Dirichlet problem Eigenvalues Mathematical and Computational Physics Mathematics Mathematics and Statistics Operators (mathematics) Original Paper Theoretical |
title | Fractional Sturm–Liouville eigenvalue problems, I |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T04%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20Sturm%E2%80%93Liouville%20eigenvalue%20problems,%20I&rft.jtitle=Revista%20de%20la%20Real%20Academia%20de%20Ciencias%20Exactas,%20F%C3%ADsicas%20y%20Naturales.%20Serie%20A,%20Matem%C3%A1ticas&rft.au=Dehghan,%20M.&rft.date=2020-04-01&rft.volume=114&rft.issue=2&rft.artnum=46&rft.issn=1578-7303&rft.eissn=1579-1505&rft_id=info:doi/10.1007/s13398-019-00756-8&rft_dat=%3Cproquest_cross%3E2332098984%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2332098984&rft_id=info:pmid/&rfr_iscdi=true |