Fractional Sturm–Liouville eigenvalue problems, I
We introduce and present the general solution of three two-term fractional differential equations of mixed Caputo/Riemann–Liouville type. We then solve a Dirichlet type Sturm–Liouville eigenvalue problem for a fractional differential equation derived from a special composition of a Caputo and a Riem...
Gespeichert in:
Veröffentlicht in: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2020-04, Vol.114 (2), Article 46 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce and present the general solution of three two-term fractional differential equations of mixed Caputo/Riemann–Liouville type. We then solve a Dirichlet type Sturm–Liouville eigenvalue problem for a fractional differential equation derived from a special composition of a Caputo and a Riemann–Liouville operator on a finite interval where the boundary conditions are induced by evaluating Riemann–Liouville integrals at those end-points. For each
1
/
2
<
α
<
1
it is shown that there is a finite number of real eigenvalues, an infinite number of non-real eigenvalues, that the number of such real eigenvalues grows without bound as
α
→
1
-
, and that the fractional operator converges to an ordinary two term Sturm–Liouville operator as
α
→
1
-
with Dirichlet boundary conditions. Finally, two-sided estimates as to their location are provided as is their asymptotic behavior as a function of
α
. |
---|---|
ISSN: | 1578-7303 1579-1505 |
DOI: | 10.1007/s13398-019-00756-8 |