Fractional Sturm–Liouville eigenvalue problems, I

We introduce and present the general solution of three two-term fractional differential equations of mixed Caputo/Riemann–Liouville type. We then solve a Dirichlet type Sturm–Liouville eigenvalue problem for a fractional differential equation derived from a special composition of a Caputo and a Riem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2020-04, Vol.114 (2), Article 46
Hauptverfasser: Dehghan, M., Mingarelli, A. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce and present the general solution of three two-term fractional differential equations of mixed Caputo/Riemann–Liouville type. We then solve a Dirichlet type Sturm–Liouville eigenvalue problem for a fractional differential equation derived from a special composition of a Caputo and a Riemann–Liouville operator on a finite interval where the boundary conditions are induced by evaluating Riemann–Liouville integrals at those end-points. For each 1 / 2 < α < 1 it is shown that there is a finite number of real eigenvalues, an infinite number of non-real eigenvalues, that the number of such real eigenvalues grows without bound as α → 1 - , and that the fractional operator converges to an ordinary two term Sturm–Liouville operator as α → 1 - with Dirichlet boundary conditions. Finally, two-sided estimates as to their location are provided as is their asymptotic behavior as a function of α .
ISSN:1578-7303
1579-1505
DOI:10.1007/s13398-019-00756-8