Rapamycin Affects Palmitate-Induced Lipotoxicity in Osteoblasts by Modulating Apoptosis and Autophagy
Abstract Bone marrow fat infiltration is one of the hallmarks of aging and osteoporotic bones. Marrow adipocytes produce substantial amounts of palmitic acid (PA). PA is toxic to bone-forming osteoblasts in vitro, affecting their differentiation, function, and survival. Since rapamycin (RAP)-induced...
Gespeichert in:
Veröffentlicht in: | The journals of gerontology. Series A, Biological sciences and medical sciences Biological sciences and medical sciences, 2020-01, Vol.75 (1), p.58-63 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Bone marrow fat infiltration is one of the hallmarks of aging and osteoporotic bones. Marrow adipocytes produce substantial amounts of palmitic acid (PA). PA is toxic to bone-forming osteoblasts in vitro, affecting their differentiation, function, and survival. Since rapamycin (RAP)-induced inhibition of target of rapamycin complex 1 (mTORC1) activates autophagy and prevents apoptosis, we hypothesized that RAP may preserve osteoblast viability and reduce PA-induced lipotoxicity. Normal human osteoblasts were incubated with RAP in the presence of a lipotoxic concentration of PA or vehicle for 24 and 48 hours. Expression of LC3 protein levels and the phosphorylation of the direct mTORC1 target p70S6K1-T389 were quantified by Western blot. Lysosomes and autophagosomes were studied using confocal fluorescence imaging, lysotracker, and live-cell imaging. RAP reduced PA-induced apoptosis. In addition, PA-induced autophagosome formation increased substantially over the time-course, an effect that was significantly regulated by the presence of RAP in the media. In addition, LC3I/II ratios were higher in PA-induced cells with RAP whereas p70S6K1-T389 were lower in PA and RAP together. In summary, this study highlights the role of the RAP-sensitive mTORC1 pathway in normal human osteoblasts under lipotoxic conditions. RAP-associated therapies could, potentially, be targeted for specific roles in osteoporosis and aging bone. |
---|---|
ISSN: | 1079-5006 1758-535X |
DOI: | 10.1093/gerona/glz149 |