A hybrid solid electrolyte Li0.33La0.557TiO3/poly(acylonitrile) membrane infiltrated with a succinonitrile-based electrolyte for solid state lithium-ion batteries
Solid state lithium-ion batteries are considered as one of the most promising next-generation technologies for energy storage. However, the low ionic conductivity of solid electrolytes and interfacial compatibility issues remain huge challenges to solid state lithium-ion batteries. Herein, a novel h...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020, Vol.8 (2), p.706-713 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Solid state lithium-ion batteries are considered as one of the most promising next-generation technologies for energy storage. However, the low ionic conductivity of solid electrolytes and interfacial compatibility issues remain huge challenges to solid state lithium-ion batteries. Herein, a novel hybrid solid electrolyte (HSE) membrane consisting of Li0.33La0.557TiO3 (LLTO) ceramic nanorods, poly(acylonitrile) (PAN) and succinonitrile (SN) is constructed. The HSE integrates their merits and shows a high ionic conductivity of 2.20 × 10−3 S cm−1 at 30 °C. It also exhibits a high electrochemical window of 5.1 V (vs. Li/Li+), superior thermal stability and good mechanical properties. When applied in solid state lithium-ion batteries using LiFePO4 as the cathode, the battery demonstrates excellent rate capability and high cycling performance. At a current rate of 0.5C after 150 cycles, the discharge specific capacity still remains at 151 mA h g−1 without decay. This investigation indicates that the HSE membrane could provide a promising solution for high performance solid state lithium-ion batteries. |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/c9ta08601c |