The energy cost of the tonoplast futile sodium leak

Active removal of Na⁺ from the cytosol into the vacuole plays a critical role in salinity tissue tolerance, but another, often neglected component of this trait is Na⁺ retention in vacuoles. This retention is based on an efficient control of Na⁺-permeable slow- and fast-vacuolar channels that mediat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2020-02, Vol.225 (3), p.1105-1110
Hauptverfasser: Shabala, Sergey, Chen, Guang, Chen, Zhong-Hua, Pottosin, Igor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1110
container_issue 3
container_start_page 1105
container_title The New phytologist
container_volume 225
creator Shabala, Sergey
Chen, Guang
Chen, Zhong-Hua
Pottosin, Igor
description Active removal of Na⁺ from the cytosol into the vacuole plays a critical role in salinity tissue tolerance, but another, often neglected component of this trait is Na⁺ retention in vacuoles. This retention is based on an efficient control of Na⁺-permeable slow- and fast-vacuolar channels that mediate the back-leak of Na⁺ into cytosol and, if not regulated tightly, could result in a futile cycle. This Tansley insight summarizes our current knowledge of regulation of tonoplast Na⁺-permeable channels and discusses the energy cost of vacuolar Na⁺ sequestration, under different scenarios. We also report on a phylogenetic and bioinformatic analysis of the plant two-pore channel family and the difference in its structure and regulation between halophytes and glycophytes, in the context of salinity tolerance.
doi_str_mv 10.1111/nph.15758
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2331715522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26928248</jstor_id><sourcerecordid>26928248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4768-6d5481fd4fe5a6afa1e9e242fcbd5fbfefe4d051d744c7d86926fdf57dbe038c3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EoqVw4AFAkThxSOt_O0dUAUWqgEORuFlJbNOWNA52ItS3x5C2N_ay0ujbGe0AcIngGMWZ1M1yjJhg8ggMEeVZKhERx2AIIZYpp_x9AM5CWEMIM8bxKRgQKCHOuBwCsliaxNTGf2yT0oU2cTZpo9S62jVVHgXbtavKJMHpVbdJKpN_noMTm1fBXOz2CLw93C-ms3T-8vg0vZunJRU8BmtGJbKaWsNyntscmcxgim1ZaGYLa6yhGjKkBaWl0JJnmFttmdCFgUSWZARuet_Gu6_OhFatXefrGKkwIUggxjCO1G1Pld6F4I1VjV9tcr9VCKrfelSsR_3VE9nrnWNXbIw-kPs-IjDpge_48_Z_J_X8OttbXvUX69A6f7jA8RuJqSQ_6314XA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331715522</pqid></control><display><type>article</type><title>The energy cost of the tonoplast futile sodium leak</title><source>Wiley-Blackwell Free Backfiles(OpenAccess)</source><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek</source><source>JSTOR</source><creator>Shabala, Sergey ; Chen, Guang ; Chen, Zhong-Hua ; Pottosin, Igor</creator><creatorcontrib>Shabala, Sergey ; Chen, Guang ; Chen, Zhong-Hua ; Pottosin, Igor</creatorcontrib><description>Active removal of Na⁺ from the cytosol into the vacuole plays a critical role in salinity tissue tolerance, but another, often neglected component of this trait is Na⁺ retention in vacuoles. This retention is based on an efficient control of Na⁺-permeable slow- and fast-vacuolar channels that mediate the back-leak of Na⁺ into cytosol and, if not regulated tightly, could result in a futile cycle. This Tansley insight summarizes our current knowledge of regulation of tonoplast Na⁺-permeable channels and discusses the energy cost of vacuolar Na⁺ sequestration, under different scenarios. We also report on a phylogenetic and bioinformatic analysis of the plant two-pore channel family and the difference in its structure and regulation between halophytes and glycophytes, in the context of salinity tolerance.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.15758</identifier><identifier>PMID: 30802968</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Channels ; Cytosol ; Energy costs ; Energy Metabolism ; H+‐ATPase ; halophyte ; Halophytes ; Permeability ; Phylogeny ; Plant Proteins - metabolism ; Proton Pumps - metabolism ; Retention ; Salinity ; Salinity effects ; salinity stress ; Salinity tolerance ; Salt-Tolerant Plants - metabolism ; Sodium ; Sodium - metabolism ; Tansley insight ; tonoplast ion channels ; two‐pore channel 1 (TPC1) ; vacuolar sodium sequestration ; Vacuoles ; Vacuoles - metabolism</subject><ispartof>The New phytologist, 2020-02, Vol.225 (3), p.1105-1110</ispartof><rights>2019 The Authors © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</rights><rights>Copyright © 2020 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4768-6d5481fd4fe5a6afa1e9e242fcbd5fbfefe4d051d744c7d86926fdf57dbe038c3</citedby><cites>FETCH-LOGICAL-c4768-6d5481fd4fe5a6afa1e9e242fcbd5fbfefe4d051d744c7d86926fdf57dbe038c3</cites><orcidid>0000-0003-2345-8981 ; 0000-0003-3906-9331 ; 0000-0002-9657-9226 ; 0000-0002-7531-320X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26928248$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26928248$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,1433,27924,27925,45574,45575,46409,46833,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30802968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shabala, Sergey</creatorcontrib><creatorcontrib>Chen, Guang</creatorcontrib><creatorcontrib>Chen, Zhong-Hua</creatorcontrib><creatorcontrib>Pottosin, Igor</creatorcontrib><title>The energy cost of the tonoplast futile sodium leak</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Active removal of Na⁺ from the cytosol into the vacuole plays a critical role in salinity tissue tolerance, but another, often neglected component of this trait is Na⁺ retention in vacuoles. This retention is based on an efficient control of Na⁺-permeable slow- and fast-vacuolar channels that mediate the back-leak of Na⁺ into cytosol and, if not regulated tightly, could result in a futile cycle. This Tansley insight summarizes our current knowledge of regulation of tonoplast Na⁺-permeable channels and discusses the energy cost of vacuolar Na⁺ sequestration, under different scenarios. We also report on a phylogenetic and bioinformatic analysis of the plant two-pore channel family and the difference in its structure and regulation between halophytes and glycophytes, in the context of salinity tolerance.</description><subject>Channels</subject><subject>Cytosol</subject><subject>Energy costs</subject><subject>Energy Metabolism</subject><subject>H+‐ATPase</subject><subject>halophyte</subject><subject>Halophytes</subject><subject>Permeability</subject><subject>Phylogeny</subject><subject>Plant Proteins - metabolism</subject><subject>Proton Pumps - metabolism</subject><subject>Retention</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>salinity stress</subject><subject>Salinity tolerance</subject><subject>Salt-Tolerant Plants - metabolism</subject><subject>Sodium</subject><subject>Sodium - metabolism</subject><subject>Tansley insight</subject><subject>tonoplast ion channels</subject><subject>two‐pore channel 1 (TPC1)</subject><subject>vacuolar sodium sequestration</subject><subject>Vacuoles</subject><subject>Vacuoles - metabolism</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1OwzAQhC0EoqVw4AFAkThxSOt_O0dUAUWqgEORuFlJbNOWNA52ItS3x5C2N_ay0ujbGe0AcIngGMWZ1M1yjJhg8ggMEeVZKhERx2AIIZYpp_x9AM5CWEMIM8bxKRgQKCHOuBwCsliaxNTGf2yT0oU2cTZpo9S62jVVHgXbtavKJMHpVbdJKpN_noMTm1fBXOz2CLw93C-ms3T-8vg0vZunJRU8BmtGJbKaWsNyntscmcxgim1ZaGYLa6yhGjKkBaWl0JJnmFttmdCFgUSWZARuet_Gu6_OhFatXefrGKkwIUggxjCO1G1Pld6F4I1VjV9tcr9VCKrfelSsR_3VE9nrnWNXbIw-kPs-IjDpge_48_Z_J_X8OttbXvUX69A6f7jA8RuJqSQ_6314XA</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Shabala, Sergey</creator><creator>Chen, Guang</creator><creator>Chen, Zhong-Hua</creator><creator>Pottosin, Igor</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-2345-8981</orcidid><orcidid>https://orcid.org/0000-0003-3906-9331</orcidid><orcidid>https://orcid.org/0000-0002-9657-9226</orcidid><orcidid>https://orcid.org/0000-0002-7531-320X</orcidid></search><sort><creationdate>202002</creationdate><title>The energy cost of the tonoplast futile sodium leak</title><author>Shabala, Sergey ; Chen, Guang ; Chen, Zhong-Hua ; Pottosin, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4768-6d5481fd4fe5a6afa1e9e242fcbd5fbfefe4d051d744c7d86926fdf57dbe038c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Channels</topic><topic>Cytosol</topic><topic>Energy costs</topic><topic>Energy Metabolism</topic><topic>H+‐ATPase</topic><topic>halophyte</topic><topic>Halophytes</topic><topic>Permeability</topic><topic>Phylogeny</topic><topic>Plant Proteins - metabolism</topic><topic>Proton Pumps - metabolism</topic><topic>Retention</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>salinity stress</topic><topic>Salinity tolerance</topic><topic>Salt-Tolerant Plants - metabolism</topic><topic>Sodium</topic><topic>Sodium - metabolism</topic><topic>Tansley insight</topic><topic>tonoplast ion channels</topic><topic>two‐pore channel 1 (TPC1)</topic><topic>vacuolar sodium sequestration</topic><topic>Vacuoles</topic><topic>Vacuoles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shabala, Sergey</creatorcontrib><creatorcontrib>Chen, Guang</creatorcontrib><creatorcontrib>Chen, Zhong-Hua</creatorcontrib><creatorcontrib>Pottosin, Igor</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shabala, Sergey</au><au>Chen, Guang</au><au>Chen, Zhong-Hua</au><au>Pottosin, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The energy cost of the tonoplast futile sodium leak</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2020-02</date><risdate>2020</risdate><volume>225</volume><issue>3</issue><spage>1105</spage><epage>1110</epage><pages>1105-1110</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Active removal of Na⁺ from the cytosol into the vacuole plays a critical role in salinity tissue tolerance, but another, often neglected component of this trait is Na⁺ retention in vacuoles. This retention is based on an efficient control of Na⁺-permeable slow- and fast-vacuolar channels that mediate the back-leak of Na⁺ into cytosol and, if not regulated tightly, could result in a futile cycle. This Tansley insight summarizes our current knowledge of regulation of tonoplast Na⁺-permeable channels and discusses the energy cost of vacuolar Na⁺ sequestration, under different scenarios. We also report on a phylogenetic and bioinformatic analysis of the plant two-pore channel family and the difference in its structure and regulation between halophytes and glycophytes, in the context of salinity tolerance.</abstract><cop>England</cop><pub>Wiley</pub><pmid>30802968</pmid><doi>10.1111/nph.15758</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2345-8981</orcidid><orcidid>https://orcid.org/0000-0003-3906-9331</orcidid><orcidid>https://orcid.org/0000-0002-9657-9226</orcidid><orcidid>https://orcid.org/0000-0002-7531-320X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2020-02, Vol.225 (3), p.1105-1110
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_journals_2331715522
source Wiley-Blackwell Free Backfiles(OpenAccess); Wiley Online Library - AutoHoldings Journals; MEDLINE; Elektronische Zeitschriftenbibliothek; JSTOR
subjects Channels
Cytosol
Energy costs
Energy Metabolism
H+‐ATPase
halophyte
Halophytes
Permeability
Phylogeny
Plant Proteins - metabolism
Proton Pumps - metabolism
Retention
Salinity
Salinity effects
salinity stress
Salinity tolerance
Salt-Tolerant Plants - metabolism
Sodium
Sodium - metabolism
Tansley insight
tonoplast ion channels
two‐pore channel 1 (TPC1)
vacuolar sodium sequestration
Vacuoles
Vacuoles - metabolism
title The energy cost of the tonoplast futile sodium leak
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20energy%20cost%20of%20the%20tonoplast%20futile%20sodium%20leak&rft.jtitle=The%20New%20phytologist&rft.au=Shabala,%20Sergey&rft.date=2020-02&rft.volume=225&rft.issue=3&rft.spage=1105&rft.epage=1110&rft.pages=1105-1110&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.15758&rft_dat=%3Cjstor_proqu%3E26928248%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331715522&rft_id=info:pmid/30802968&rft_jstor_id=26928248&rfr_iscdi=true