The energy cost of the tonoplast futile sodium leak
Active removal of Na⁺ from the cytosol into the vacuole plays a critical role in salinity tissue tolerance, but another, often neglected component of this trait is Na⁺ retention in vacuoles. This retention is based on an efficient control of Na⁺-permeable slow- and fast-vacuolar channels that mediat...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2020-02, Vol.225 (3), p.1105-1110 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Active removal of Na⁺ from the cytosol into the vacuole plays a critical role in salinity tissue tolerance, but another, often neglected component of this trait is Na⁺ retention in vacuoles. This retention is based on an efficient control of Na⁺-permeable slow- and fast-vacuolar channels that mediate the back-leak of Na⁺ into cytosol and, if not regulated tightly, could result in a futile cycle. This Tansley insight summarizes our current knowledge of regulation of tonoplast Na⁺-permeable channels and discusses the energy cost of vacuolar Na⁺ sequestration, under different scenarios. We also report on a phylogenetic and bioinformatic analysis of the plant two-pore channel family and the difference in its structure and regulation between halophytes and glycophytes, in the context of salinity tolerance. |
---|---|
ISSN: | 0028-646X 1469-8137 |
DOI: | 10.1111/nph.15758 |