The energy cost of the tonoplast futile sodium leak

Active removal of Na⁺ from the cytosol into the vacuole plays a critical role in salinity tissue tolerance, but another, often neglected component of this trait is Na⁺ retention in vacuoles. This retention is based on an efficient control of Na⁺-permeable slow- and fast-vacuolar channels that mediat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2020-02, Vol.225 (3), p.1105-1110
Hauptverfasser: Shabala, Sergey, Chen, Guang, Chen, Zhong-Hua, Pottosin, Igor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Active removal of Na⁺ from the cytosol into the vacuole plays a critical role in salinity tissue tolerance, but another, often neglected component of this trait is Na⁺ retention in vacuoles. This retention is based on an efficient control of Na⁺-permeable slow- and fast-vacuolar channels that mediate the back-leak of Na⁺ into cytosol and, if not regulated tightly, could result in a futile cycle. This Tansley insight summarizes our current knowledge of regulation of tonoplast Na⁺-permeable channels and discusses the energy cost of vacuolar Na⁺ sequestration, under different scenarios. We also report on a phylogenetic and bioinformatic analysis of the plant two-pore channel family and the difference in its structure and regulation between halophytes and glycophytes, in the context of salinity tolerance.
ISSN:0028-646X
1469-8137
DOI:10.1111/nph.15758