On Convergence of Partial Sums of Franklin Series to

In this paper, we prove that if { n k } is an arbitrary increasing sequence of natural numbers such that the ratio n k +1 / n k is bounded, then the n k -th partial sum of a series by Franklin system cannot converge to +∞ on a set of positive measure. Also, we prove that if the ratio n k +1 / n k is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of contemporary mathematical analysis 2019-11, Vol.54 (6), p.347-354
Hauptverfasser: Navasardyan, K. A., Mikayelyan, V. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we prove that if { n k } is an arbitrary increasing sequence of natural numbers such that the ratio n k +1 / n k is bounded, then the n k -th partial sum of a series by Franklin system cannot converge to +∞ on a set of positive measure. Also, we prove that if the ratio n k +1 / n k is unbounded, then there exists a series by Franklin system, the n k -th partial sum of which converges to +∞ almost everywhere on [0, 1].
ISSN:1068-3623
1934-9416
DOI:10.3103/S1068362319060049