Improved mixed elastohydrodynamic lubrication of hypoid gears by the optimization of manufacture parameters

Extensive wear appears in the case of dry contacts, or when the lubrication of the contacting surfaces is not appropriate. The aim of this research is to improve the mixed elastohydrodynamic lubrication in hypoid gears by the optimization of manufacture parameters for tooth surface processing. A ful...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wear 2019-11, Vol.438-439, p.1
1. Verfasser: Simon, Vilmos V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extensive wear appears in the case of dry contacts, or when the lubrication of the contacting surfaces is not appropriate. The aim of this research is to improve the mixed elastohydrodynamic lubrication in hypoid gears by the optimization of manufacture parameters for tooth surface processing. A full numerical analysis of the thermal mixed EHL in hypoid gears is applied. The equation system and the numerical procedure are unified for a full coverage of all the lubrication regions including the full film, mixed, and boundary lubrication. In the hydrodynamically lubricated areas the calculation method employed is based on the simultaneous solution of the Reynolds, elasticity, energy, and Laplace's equations. In the asperity contact areas the Reynolds equation is reduced to an expression equivalent to the mathematical description of dry contact problem. The real geometry and kinematics of the gear pair based on the manufacturing procedure is applied, thus the exact geometrical separation of the mating tooth surfaces is included in the oil film shape, and the real velocities of these surfaces are used in the Reynolds and energy equations. The transient nature of gear tooth mesh is included. The oil viscosity variation with respect to pressure and temperature and the density variation with respect to pressure are included. The non-Newtonian behaviour of the lubricant is considered. Using this model, the pressures, film thickness, temperatures, and power losses in the mixed lubrication regime are predicted. By using the developed method, the influence of the manufacturing parameters on the conditions of mixed elastohydrodynamic lubrication is investigated. On the basis of the obtained results recommendations are formulated to improve the mixed EHL and the efficiency of face-milled hypoid gears. •A full numerical analysis of the mixed EHL in hypoid gears is performed.•The influence of the manufacture parameters on mixed EHL in hypoid gears is investigated.•Recommendations are formulated to improve the EHL characteristics of hypoid gears by optimizing the manufacture procedure.
ISSN:0043-1648
1873-2577
DOI:10.1016/j.wear.2019.01.053