Water Availability and Deformation Processes in Smectite‐Rich Gouges During Seismic Slip
Smectite clays occur in subduction zone fault cores at shallow depth (approximately 1 km; e.g., Japan Trench) and landslide décollements (e.g., Vajont, Italy, 1963). The availability of pore fluids affects the likelihood that seismic slip propagates from deeper to shallow fault depths or that a land...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Solid earth 2019-11, Vol.124 (11), p.10855-10876 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Smectite clays occur in subduction zone fault cores at shallow depth (approximately 1 km; e.g., Japan Trench) and landslide décollements (e.g., Vajont, Italy, 1963). The availability of pore fluids affects the likelihood that seismic slip propagates from deeper to shallow fault depths or that a landslide accelerates to its final collapse. To investigate the deformation processes active during seismic faulting we performed friction experiments with a rotary machine on 2‐mm‐thick smectite‐rich gouge layers (70/30 wt % Ca‐montmorillonite/opal) sheared at 5‐MPa normal stress, at slip rates of 0.001, 0.01, 0.1, and 1.3 m/s, and total displacement of 3 m. Experiments were performed on predried gouges under vacuum, under room humidity and under partly saturated conditions. The fault shear strength measured in the experiments was included in a one‐dimensional numerical model incorporating frictional heating, thermal, and thermochemical pressurization. Quantitative X‐ray powder diffraction and scanning electron microscopy investigations were performed on pristine and deformed smectite‐rich gouges. Under dry conditions, cataclasis and amorphization dominated at slip rates of 0.001–0.1 m/s, whereas grain size sensitive flow and, under vacuum, frictional melting occurred at fast slip rates (1.3 m/s). Under partly saturated conditions, frictional slip in a smectite foliation occurred in combination with pressurization of water by shear‐enhanced compaction and, for V = 0.01–1.3 m/s, with thermal pressurization. Pseudotachylytes, the only reliable microstructural markers for seismic slip, formed only with large frictional power (>2 MW/m2), which could be achieved at shallow depth with high slip rates, or, at depth, with high shear stress in dehydrated smectites.
Key Points
In smectite‐rich gouges, deformation processes associated with seismic slip depend on the availability of water and slip velocity
Under partly saturated conditions, water mechanical pressurization and thermal pressurization (>0.01 m/s) control shear strength
Under dry conditions, cataclasis (0.001–0.1 m/s) and grain size sensitive flow or frictional melting (1.3 m/s) control shear strength |
---|---|
ISSN: | 2169-9313 2169-9356 |
DOI: | 10.1029/2019JB018229 |