Fall Detection Using Standoff Radar-Based Sensing and Deep Convolutional Neural Network
Automatic fall detection using radar aids in better assisted living and smarter health care. In this brief, a novel time series-based method for detecting fall incidents in human daily activities is proposed. A time series in the slow-time is obtained by summing all the range bins corresponding to f...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2020-01, Vol.67 (1), p.197-201 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 201 |
---|---|
container_issue | 1 |
container_start_page | 197 |
container_title | IEEE transactions on circuits and systems. II, Express briefs |
container_volume | 67 |
creator | Sadreazami, Hamidreza Bolic, Miodrag Rajan, Sreeraman |
description | Automatic fall detection using radar aids in better assisted living and smarter health care. In this brief, a novel time series-based method for detecting fall incidents in human daily activities is proposed. A time series in the slow-time is obtained by summing all the range bins corresponding to fast-time of the ultra wideband radar return signals. This time series is used as input to the proposed deep convolutional neural network for automatic feature extraction. In contrast to other existing methods, the proposed fall detection method relies on multi-level feature learning directly from the radar time series signals. In particular, the proposed method utilizes a deep convolutional neural network for automating feature extraction as well as global maximum pooling technique for enhancing model discriminability. The performance of the proposed method is compared with that of the state-of-the-art, such as recurrent neural network, multi-layer perceptron, and dynamic time warping techniques. The results demonstrate that the proposed fall detection method outperforms the other methods in terms of higher accuracy, precision, sensitivity, and specificity values. |
doi_str_mv | 10.1109/TCSII.2019.2904498 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2330849778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8664624</ieee_id><sourcerecordid>2330849778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-a167f1f6dd776bb6ed80919cf033d14b28d9f4625a26ba10dbd2690adf848fa83</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhYMoOKd_QG8CXnfma_m41Op0MBTchpchbRLprM1MWsV_b7sNr84L5zwvhwPAJUYTjJG6WeXL-XxCEFYTohBjSh6BEZ5OZUaFwsfDzVQmBBOn4CylDUJ9jJIReJuZuob3rnVlW4UGrlPVvMNlaxobvIevxpqY3ZnkLFy6Zmf2Vg-4LcxD8x3qbuBMDZ9dF3fS_oT4cQ5OvKmTuzjoGKxnD6v8KVu8PM7z20VWUo7bzGAuPPbcWiF4UXBnJVJYlR5RajEriLTKM06mhvDCYGQLS7hCxnrJpDeSjsH1_u82hq_OpVZvQhf7PkkTSpFkSoghRfapMoaUovN6G6tPE381RnoYUO8G1MOA-jBgD13toco59w9Izvs-jP4BI8hslw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330849778</pqid></control><display><type>article</type><title>Fall Detection Using Standoff Radar-Based Sensing and Deep Convolutional Neural Network</title><source>IEEE Electronic Library (IEL)</source><creator>Sadreazami, Hamidreza ; Bolic, Miodrag ; Rajan, Sreeraman</creator><creatorcontrib>Sadreazami, Hamidreza ; Bolic, Miodrag ; Rajan, Sreeraman</creatorcontrib><description>Automatic fall detection using radar aids in better assisted living and smarter health care. In this brief, a novel time series-based method for detecting fall incidents in human daily activities is proposed. A time series in the slow-time is obtained by summing all the range bins corresponding to fast-time of the ultra wideband radar return signals. This time series is used as input to the proposed deep convolutional neural network for automatic feature extraction. In contrast to other existing methods, the proposed fall detection method relies on multi-level feature learning directly from the radar time series signals. In particular, the proposed method utilizes a deep convolutional neural network for automating feature extraction as well as global maximum pooling technique for enhancing model discriminability. The performance of the proposed method is compared with that of the state-of-the-art, such as recurrent neural network, multi-layer perceptron, and dynamic time warping techniques. The results demonstrate that the proposed fall detection method outperforms the other methods in terms of higher accuracy, precision, sensitivity, and specificity values.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2019.2904498</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Biomedical signal processing ; Broadband ; Convolution ; convolutional neural network ; Convolutional neural networks ; Fall detection ; Feature extraction ; Multilayers ; Neural networks ; Radar detection ; Recurrent neural networks ; smart homes ; Time series ; Time series analysis ; ultra-wideband radar ; Ultrawideband</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2020-01, Vol.67 (1), p.197-201</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-a167f1f6dd776bb6ed80919cf033d14b28d9f4625a26ba10dbd2690adf848fa83</citedby><cites>FETCH-LOGICAL-c361t-a167f1f6dd776bb6ed80919cf033d14b28d9f4625a26ba10dbd2690adf848fa83</cites><orcidid>0000-0002-2624-0681 ; 0000-0002-8013-8645 ; 0000-0003-0153-6723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8664624$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8664624$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sadreazami, Hamidreza</creatorcontrib><creatorcontrib>Bolic, Miodrag</creatorcontrib><creatorcontrib>Rajan, Sreeraman</creatorcontrib><title>Fall Detection Using Standoff Radar-Based Sensing and Deep Convolutional Neural Network</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>Automatic fall detection using radar aids in better assisted living and smarter health care. In this brief, a novel time series-based method for detecting fall incidents in human daily activities is proposed. A time series in the slow-time is obtained by summing all the range bins corresponding to fast-time of the ultra wideband radar return signals. This time series is used as input to the proposed deep convolutional neural network for automatic feature extraction. In contrast to other existing methods, the proposed fall detection method relies on multi-level feature learning directly from the radar time series signals. In particular, the proposed method utilizes a deep convolutional neural network for automating feature extraction as well as global maximum pooling technique for enhancing model discriminability. The performance of the proposed method is compared with that of the state-of-the-art, such as recurrent neural network, multi-layer perceptron, and dynamic time warping techniques. The results demonstrate that the proposed fall detection method outperforms the other methods in terms of higher accuracy, precision, sensitivity, and specificity values.</description><subject>Artificial neural networks</subject><subject>Biomedical signal processing</subject><subject>Broadband</subject><subject>Convolution</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Fall detection</subject><subject>Feature extraction</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Radar detection</subject><subject>Recurrent neural networks</subject><subject>smart homes</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>ultra-wideband radar</subject><subject>Ultrawideband</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAYhYMoOKd_QG8CXnfma_m41Op0MBTchpchbRLprM1MWsV_b7sNr84L5zwvhwPAJUYTjJG6WeXL-XxCEFYTohBjSh6BEZ5OZUaFwsfDzVQmBBOn4CylDUJ9jJIReJuZuob3rnVlW4UGrlPVvMNlaxobvIevxpqY3ZnkLFy6Zmf2Vg-4LcxD8x3qbuBMDZ9dF3fS_oT4cQ5OvKmTuzjoGKxnD6v8KVu8PM7z20VWUo7bzGAuPPbcWiF4UXBnJVJYlR5RajEriLTKM06mhvDCYGQLS7hCxnrJpDeSjsH1_u82hq_OpVZvQhf7PkkTSpFkSoghRfapMoaUovN6G6tPE381RnoYUO8G1MOA-jBgD13toco59w9Izvs-jP4BI8hslw</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Sadreazami, Hamidreza</creator><creator>Bolic, Miodrag</creator><creator>Rajan, Sreeraman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2624-0681</orcidid><orcidid>https://orcid.org/0000-0002-8013-8645</orcidid><orcidid>https://orcid.org/0000-0003-0153-6723</orcidid></search><sort><creationdate>202001</creationdate><title>Fall Detection Using Standoff Radar-Based Sensing and Deep Convolutional Neural Network</title><author>Sadreazami, Hamidreza ; Bolic, Miodrag ; Rajan, Sreeraman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-a167f1f6dd776bb6ed80919cf033d14b28d9f4625a26ba10dbd2690adf848fa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Biomedical signal processing</topic><topic>Broadband</topic><topic>Convolution</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Fall detection</topic><topic>Feature extraction</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Radar detection</topic><topic>Recurrent neural networks</topic><topic>smart homes</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>ultra-wideband radar</topic><topic>Ultrawideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadreazami, Hamidreza</creatorcontrib><creatorcontrib>Bolic, Miodrag</creatorcontrib><creatorcontrib>Rajan, Sreeraman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sadreazami, Hamidreza</au><au>Bolic, Miodrag</au><au>Rajan, Sreeraman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fall Detection Using Standoff Radar-Based Sensing and Deep Convolutional Neural Network</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2020-01</date><risdate>2020</risdate><volume>67</volume><issue>1</issue><spage>197</spage><epage>201</epage><pages>197-201</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>Automatic fall detection using radar aids in better assisted living and smarter health care. In this brief, a novel time series-based method for detecting fall incidents in human daily activities is proposed. A time series in the slow-time is obtained by summing all the range bins corresponding to fast-time of the ultra wideband radar return signals. This time series is used as input to the proposed deep convolutional neural network for automatic feature extraction. In contrast to other existing methods, the proposed fall detection method relies on multi-level feature learning directly from the radar time series signals. In particular, the proposed method utilizes a deep convolutional neural network for automating feature extraction as well as global maximum pooling technique for enhancing model discriminability. The performance of the proposed method is compared with that of the state-of-the-art, such as recurrent neural network, multi-layer perceptron, and dynamic time warping techniques. The results demonstrate that the proposed fall detection method outperforms the other methods in terms of higher accuracy, precision, sensitivity, and specificity values.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2019.2904498</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2624-0681</orcidid><orcidid>https://orcid.org/0000-0002-8013-8645</orcidid><orcidid>https://orcid.org/0000-0003-0153-6723</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-7747 |
ispartof | IEEE transactions on circuits and systems. II, Express briefs, 2020-01, Vol.67 (1), p.197-201 |
issn | 1549-7747 1558-3791 |
language | eng |
recordid | cdi_proquest_journals_2330849778 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Biomedical signal processing Broadband Convolution convolutional neural network Convolutional neural networks Fall detection Feature extraction Multilayers Neural networks Radar detection Recurrent neural networks smart homes Time series Time series analysis ultra-wideband radar Ultrawideband |
title | Fall Detection Using Standoff Radar-Based Sensing and Deep Convolutional Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A27%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fall%20Detection%20Using%20Standoff%20Radar-Based%20Sensing%20and%20Deep%20Convolutional%20Neural%20Network&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Sadreazami,%20Hamidreza&rft.date=2020-01&rft.volume=67&rft.issue=1&rft.spage=197&rft.epage=201&rft.pages=197-201&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2019.2904498&rft_dat=%3Cproquest_RIE%3E2330849778%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330849778&rft_id=info:pmid/&rft_ieee_id=8664624&rfr_iscdi=true |