Fall Detection Using Standoff Radar-Based Sensing and Deep Convolutional Neural Network

Automatic fall detection using radar aids in better assisted living and smarter health care. In this brief, a novel time series-based method for detecting fall incidents in human daily activities is proposed. A time series in the slow-time is obtained by summing all the range bins corresponding to f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2020-01, Vol.67 (1), p.197-201
Hauptverfasser: Sadreazami, Hamidreza, Bolic, Miodrag, Rajan, Sreeraman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Automatic fall detection using radar aids in better assisted living and smarter health care. In this brief, a novel time series-based method for detecting fall incidents in human daily activities is proposed. A time series in the slow-time is obtained by summing all the range bins corresponding to fast-time of the ultra wideband radar return signals. This time series is used as input to the proposed deep convolutional neural network for automatic feature extraction. In contrast to other existing methods, the proposed fall detection method relies on multi-level feature learning directly from the radar time series signals. In particular, the proposed method utilizes a deep convolutional neural network for automating feature extraction as well as global maximum pooling technique for enhancing model discriminability. The performance of the proposed method is compared with that of the state-of-the-art, such as recurrent neural network, multi-layer perceptron, and dynamic time warping techniques. The results demonstrate that the proposed fall detection method outperforms the other methods in terms of higher accuracy, precision, sensitivity, and specificity values.
ISSN:1549-7747
1558-3791
DOI:10.1109/TCSII.2019.2904498