Diversity of salt-tolerant tellurate-reducing bacteria in a marine environment
Tellurium (Te) has been increasingly used as a semiconductor material in copious amounts, with a concomitant increase in its discharge from industrial effluents and mining wastewater into the environment. However, soluble Te, such as tellurate (VI) and tellurite (IV), is toxic to organisms. Thus, hi...
Gespeichert in:
Veröffentlicht in: | Journal of general and applied microbiology 2019, Vol.65(5), pp.246-253 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tellurium (Te) has been increasingly used as a semiconductor material in copious amounts, with a concomitant increase in its discharge from industrial effluents and mining wastewater into the environment. However, soluble Te, such as tellurate (VI) and tellurite (IV), is toxic to organisms. Thus, highly efficient technologies need to be developed for a double-benefit detoxification and recovery of soluble Te from industrial and mining wastewater. Since industrial wastewater contains high concentrations of salt, salt-tolerant microorganisms that metabolize rare metals such as Te have been the subject of focus for the effective detoxification and recovery of Te. In the present study, a total of 52 salt-tolerant tellurate-reducing microorganisms were isolated from marine environmental samples. Of these, 18 strains achieved greater than, or equal to, 50% removal of water-soluble Te from a medium containing 0.4 mM tellurate after 72 h incubation. The 18 isolated strains belonged to 13 species of the following 9 genera: Sulfitobacter, Ruegeria, Hoeflea, Alteromonas, Marinobacter, Pseudoalteromonas, Shewanella, Idiomarina, and Vibrio. No microorganism has been reported to reduce tellurate and tellurite from six of the aforementioned genera, namely, Sulfitobacter, Ruegeria, Alteromonas, Marinobacter, Idiomarina, and Vibrio. Especially, one of the isolates Sulfitobacter sp. strain TK39B, removed 82% (w/w) of soluble Te with a 4% NaCl tolerance. These results showed that salt-tolerant tellurate-reducing bacteria that can be used in the detoxification and recovery of Te are widely present in the marine environment. |
---|---|
ISSN: | 0022-1260 1349-8037 |
DOI: | 10.2323/jgam.2018.11.003 |