Effects of Alkaline Cleaning on the Conversion and Transformation of Functional Groups on Ion-Exchange Membranes in Polymer-Flooding Wastewater Treatment: Desalination Performance, Fouling Behavior, and Mechanism
The aging effects of sodium hydroxide (NaOH) on ion-exchange membranes were systematically studied, including the membrane properties, desalination performance, and fouling behaviors. After aging in NaOH solution, there were minor changes in the cation-exchange membrane (CEM) properties; however, fu...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2019-12, Vol.53 (24), p.14430-14440 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aging effects of sodium hydroxide (NaOH) on ion-exchange membranes were systematically studied, including the membrane properties, desalination performance, and fouling behaviors. After aging in NaOH solution, there were minor changes in the cation-exchange membrane (CEM) properties; however, functional groups (i.e., quaternary amines) on the anion-exchange membranes (AEMs) were converted into benzylic alcohol, alkene, and tertiary amines, respectively, by nucleophilic substitution, Hofmann elimination, and ylide formation. These degradations rendered decreased ion-exchange capacity (IEC), increased electrical resistance, lost hydrophilicity, and weakened mechanical strength. Moreover, severe deteriorations of desalination performance were observed due to the little ion-exchange ability of the degraded AEMs. The desalination rates were restored after cultivating the aged AEMs in acid solution, mainly because the tertiary amines transformed from the hydroxide form (OH-form) to the ionic chlorine form (Cl-form). The restored desalination rates indicated that the main degradation products were tertiary amines. In addition, the antifouling performance decreased in the order of aged OH-form > aged Cl-form > original AEMs due to the reduction of foulant–membrane intermolecular interactions after aging in NaOH solution. The results contribute to establishing a more comprehensive understanding of the effects of alkaline cleaning on IEMs and provide new insights into cleaning-process optimization and membrane modification. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.9b05815 |