Resource Allocation for Network Slicing in 5G Telecommunication Networks: A Survey of Principles and Models

With the rapid and sustained growth of network demands, 5G telecommunication networks are expected to provide flexible, scalable, and resilient communication and network services, not only for traditional network operators, but also for vertical industries, OTT, and third parties to satisfy their di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE network 2019-11, Vol.33 (6), p.172-179
Hauptverfasser: Su, Ruoyu, Zhang, Dengyin, Venkatesan, R., Gong, Zijun, Li, Cheng, Ding, Fei, Jiang, Fan, Zhu, Ziyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the rapid and sustained growth of network demands, 5G telecommunication networks are expected to provide flexible, scalable, and resilient communication and network services, not only for traditional network operators, but also for vertical industries, OTT, and third parties to satisfy their different requirements. Network slicing is a promising technology to establish customized end-to-end logic networks comprising dedicated and shared resources. By leveraging SDN and NFV, network slices associated with resources can be tailored to satisfy diverse QoS and SLA. Resource allocation of network slicing plays a pivotal role in load balancing, resource utilization, and networking performance. In this article, we focus on the principles and models of resource allocation algorithms in 5G network slicing. We first introduce the basic ideas of the SDN and NFV with their roles in network slicing. The MO architecture of network slicing is also studied, which provides a fundamental framework of resource allocation algorithms. Then, resource types with corresponding isolation levels in RAN slicing and CN slicing are analyzed, respectively. Furthermore, we categorize the mathematical models of resource allocation algorithms based on their objectives and elaborate them with typical examples. Finally, open research issues are identified with potential solutions.
ISSN:0890-8044
1558-156X
DOI:10.1109/MNET.2019.1900024