On the realization space of the cube
We consider the realization space of the \(d\)-dimensional cube, and show that any two realizations are connected by a finite sequence of projective transformations and normal transformations. We use this fact to define an analog of the connected sum construction for cubical \(d\)-polytopes, and app...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the realization space of the \(d\)-dimensional cube, and show that any two realizations are connected by a finite sequence of projective transformations and normal transformations. We use this fact to define an analog of the connected sum construction for cubical \(d\)-polytopes, and apply this construction to certain cubical \(d\)-polytopes to conclude that the rays spanned by \(f\)-vectors of cubical \(d\)-polytopes are dense in Adin's cone. The connectivity result on cubes extends to any product of simplices, and further, it shows the respective realization spaces are contractible. |
---|---|
ISSN: | 2331-8422 |