Molecular dynamics simulation on the thermodynamic properties of insulating paper cellulose modified by silane coupling agent grafted nano-SiO2
Thermodynamic properties of cellulose insulation paper are vital factors affecting the life of a transformer; in order to obtain cellulose insulation paper with better thermodynamic properties, three types of silane coupling agents—3-aminopropyltriethoxy silane (KH550), 3-glycidoxypropyltrimethoxy s...
Gespeichert in:
Veröffentlicht in: | AIP advances 2019-12, Vol.9 (12), p.125134-125134-7 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thermodynamic properties of cellulose insulation paper are vital factors affecting the life of a transformer; in order to obtain cellulose insulation paper with better thermodynamic properties, three types of silane coupling agents—3-aminopropyltriethoxy silane (KH550), 3-glycidoxypropyltrimethoxy silane (KH560), and 3-methacryloyloxypropyltrimethoxy silane (KH570)—were grafted on the surface of nano-SiO2, and thermodynamic properties of cellulose modified with nano-SiO2 were explored. The molecular dynamics method was used to establish a composite model of nano-SiO2/cellulose. Also, different silane coupling agent grafted nano-SiO2/cellulose models were established to explore the effect of mechanical properties, interaction energy, free volume, and hydrogen bonds on thermodynamic properties. The results showed that KH550 was the best modification of the nano-SiO2/cellulose system among the three grafted silane coupling agents because KH550 grafted on the surface of nano-SiO2 formed more hydrogen bonds in the cellulose system. The interfacial bonding strength between the nano-SiO2 and the cellulose chains can effectively improve the thermal stability of the cellulose insulating paper. |
---|---|
ISSN: | 2158-3226 2158-3226 |
DOI: | 10.1063/1.5131821 |