Propagation phenomena for a bistable Lotka–Volterra competition system with advection in a periodic habitat
This paper is concerned with a Lotka–Volterra competition system with advection in a periodic habitat ∂ u 1 ∂ t = d 1 ( x ) ∂ 2 u 1 ∂ x 2 - a 1 ( x ) ∂ u 1 ∂ x + u 1 b 1 ( x ) - a 11 ( x ) u 1 - a 12 ( x ) u 2 , ∂ u 2 ∂ t = d 2 ( x ) ∂ 2 u 2 ∂ x 2 - a 2 ( x ) ∂ u 2 ∂ x + u 2 b 2 ( x ) - a 21 ( x ) u...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2020-02, Vol.71 (1), Article 11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with a Lotka–Volterra competition system with advection in a periodic habitat
∂
u
1
∂
t
=
d
1
(
x
)
∂
2
u
1
∂
x
2
-
a
1
(
x
)
∂
u
1
∂
x
+
u
1
b
1
(
x
)
-
a
11
(
x
)
u
1
-
a
12
(
x
)
u
2
,
∂
u
2
∂
t
=
d
2
(
x
)
∂
2
u
2
∂
x
2
-
a
2
(
x
)
∂
u
2
∂
x
+
u
2
b
2
(
x
)
-
a
21
(
x
)
u
1
-
a
22
(
x
)
u
2
,
t
>
0
,
x
∈
R
,
where
d
i
(
·
)
,
a
i
(
·
)
,
b
i
(
·
)
,
a
ij
(
·
)
(
i
,
j
=
1
,
2
)
are
L
-periodic functions in
C
ν
(
R
)
for some
L
>
0
. Under certain assumptions, the system is bistable between two (linearly) stable periodic steady state solutions
(
0
,
u
2
∗
(
x
)
)
and
(
u
1
∗
(
x
)
,
0
)
. We establish the existence of pulsating traveling front
(
U
1
(
x
,
x
+
c
t
)
,
U
2
(
x
,
x
+
c
t
)
)
connecting
(
0
,
u
2
∗
(
x
)
)
to
(
u
1
∗
(
x
)
,
0
)
. Furthermore, we confirm that the pulsating traveling front is globally asymptotically stable for wave-like initial values. We finally show that such pulsating traveling front is unique (up to translation). The methods involve the sub- and supersolutions, spreading speeds of monostable systems, and the monotone semiflows approach. From the biological point of view, this kind of pulsating traveling front provides a spreading way for two strongly competing species interacting in a heterogeneous habitat. |
---|---|
ISSN: | 0044-2275 1420-9039 |
DOI: | 10.1007/s00033-019-1236-6 |