Convexity and decomposition of mean-risk stochastic programs
Traditional stochastic programming is risk neutral in the sense that it is concerned with the optimization of an expectation criterion. A common approach to addressing risk in decision making problems is to consider a weighted mean-risk objective, where some dispersion statistic is used as a measure...
Gespeichert in:
Veröffentlicht in: | Mathematical programming 2006-07, Vol.106 (3), p.433-446 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Traditional stochastic programming is risk neutral in the sense that it is concerned with the optimization of an expectation criterion. A common approach to addressing risk in decision making problems is to consider a weighted mean-risk objective, where some dispersion statistic is used as a measure of risk. We investigate the computational suitability of various mean-risk objective functions in addressing risk in stochastic programming models. We prove that the classical mean-variance criterion leads to computational intractability even in the simplest stochastic programs. On the other hand, a number of alternative mean-risk functions are shown to be computationally tractable using slight variants of existing stochastic programming decomposition algorithms. We propose decomposition-based parametric cutting plane algorithms to generate mean-risk efficient frontiers for two particular classes of mean-risk objectives. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0025-5610 1436-4646 |
DOI: | 10.1007/s10107-005-0638-8 |