A VU-algorithm for convex minimization
For convex minimization we introduce an algorithm based on VU-space decomposition. The method uses a bundle subroutine to generate a sequence of approximate proximal points. When a primal-dual track leading to a solution and zero subgradient pair exists, these points approximate the primal track poi...
Gespeichert in:
Veröffentlicht in: | Mathematical programming 2005-11, Vol.104 (2-3), p.583-608 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For convex minimization we introduce an algorithm based on VU-space decomposition. The method uses a bundle subroutine to generate a sequence of approximate proximal points. When a primal-dual track leading to a solution and zero subgradient pair exists, these points approximate the primal track points and give the algorithm's V, or corrector, steps. The subroutine also approximates dual track points that are U-gradients needed for the method's U-Newton predictor steps. With the inclusion of a simple line search the resulting algorithm is proved to be globally convergent. The convergence is superlinear if the primal-dual track points and the objective's U-Hessian are approximated well enough. |
---|---|
ISSN: | 0025-5610 1436-4646 |
DOI: | 10.1007/s10107-005-0630-3 |