A VU-algorithm for convex minimization

For convex minimization we introduce an algorithm based on VU-space decomposition. The method uses a bundle subroutine to generate a sequence of approximate proximal points. When a primal-dual track leading to a solution and zero subgradient pair exists, these points approximate the primal track poi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2005-11, Vol.104 (2-3), p.583-608
Hauptverfasser: MIFFLIN, Robert, SAGASTIZABAL, Claudia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For convex minimization we introduce an algorithm based on VU-space decomposition. The method uses a bundle subroutine to generate a sequence of approximate proximal points. When a primal-dual track leading to a solution and zero subgradient pair exists, these points approximate the primal track points and give the algorithm's V, or corrector, steps. The subroutine also approximates dual track points that are U-gradients needed for the method's U-Newton predictor steps. With the inclusion of a simple line search the resulting algorithm is proved to be globally convergent. The convergence is superlinear if the primal-dual track points and the objective's U-Hessian are approximated well enough.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-005-0630-3