Newton’s iterates can converge to non-stationary points
In this note we discuss the convergence of Newton’s method for minimization. We present examples in which the Newton iterates satisfy the Wolfe conditions and the Hessian is positive definite at each step and yet the iterates converge to a non-stationary point. These examples answer a question posed...
Gespeichert in:
Veröffentlicht in: | Mathematical programming 2008-04, Vol.112 (2), p.327-334 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note we discuss the convergence of Newton’s method for minimization. We present examples in which the Newton iterates satisfy the Wolfe conditions and the Hessian is positive definite at each step and yet the iterates converge to a non-stationary point. These examples answer a question posed by Fletcher in his 1987 book
Practical methods of optimization
. |
---|---|
ISSN: | 0025-5610 1436-4646 |
DOI: | 10.1007/s10107-006-0019-y |