Evaluation the gamma, charged particle and fast neutron shielding performances of some important AISI-coded stainless steels: Part II

This is the second part of a two-part study on the investigation of radiation shielding performances of some important AISI-coded stainless steels (AISI-302, 304, 321 and 430). Part 1 addressed experimental evaluation by means of measured photon-material interaction parameters. In this second part,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiation physics and chemistry (Oxford, England : 1993) England : 1993), 2020-01, Vol.166, p.108454, Article 108454
Hauptverfasser: Alım, Bünyamin, Şakar, Erdem, Han, İbrahim, Sayyed, M.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This is the second part of a two-part study on the investigation of radiation shielding performances of some important AISI-coded stainless steels (AISI-302, 304, 321 and 430). Part 1 addressed experimental evaluation by means of measured photon-material interaction parameters. In this second part, we focused on the calculation and discussion of other interaction parameters, which are a guide to choice optimum shielding materials in the nuclear processes for the present AISI-coded stainless steels. The present stainless steels have superior mechanical properties, high temperature and corrosion resistances and these properties can make them favorite materials for nuclear applications. For this reason, firstly, the incoherent scattering/total attenuation ratio (Rinc/total) and equivalent atomic number (Zeq) were calculated in the energy region of 0.015–15 MeV. Secondly, the exposure build-up factor (EBF) and energy absorption build-up factor (EABF) were determined to select steels by using Geometric Progression (G-P) fitting method, which have five parameters (a, b, c, d and XK coefficients), up to penetration depth of 40 MFP at energy 0.015–15 MeV. Thirdly, the mass stopping powers (MSPs; dE/ρdx ; MeVcm2/g) and ranges (Re, Rp and Rα; μm) for electron, proton and alpha particle interactions were calculated at energy 10 keV-20 MeV. Finally, the fast neutron removal cross-sections (FNRCSs; ∑R; cm−1) were calculated. To be able to make comparison and a satisfying assessment about radiation shielding capabilities of present AISI-coded steels, all parameters were also computed for ordinary (OC), steel-scrap (SS) and steel-magnetite (SM) concretes (Fe-based steel concretes) that are most commonly used as a shielding material in many nuclear applications. The shielding capabilities of the present stainless steels against both gamma and the fast neutron and charged particle radiation were evaluated in the light of the calculated parameters. As a result of the mutual evaluation of the results obtained for the shielding concretes and the examined stainless steels, it was found that present stainless steels had excellent shielding properties compared to shielding concretes in terms of both photon radiation and particle radiation. •Austenitic stainless steels have excellent shielding performances.•AISI 300 series stainless steels can be preferred as a shielding material.•AISI-coded stainless steels have lower range values than shielding concretes.•AISI-coded stainless s
ISSN:0969-806X
1879-0895
DOI:10.1016/j.radphyschem.2019.108454