MRI-based brain tumor segmentation using Gaussian mixture model with reversible jump Markov chain Monte Carlo algorithm

A brain tumor is the 15th deadly disease in Indonesia according to the WHO in 2018. In medical treatment, brain tumors can be detected through Magnetic Resonance Imaging (MRI). The main problem is how to separate the brain tumor area as the Region of interest (ROI) with the other healthy part (Non-R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pravitasari, Anindya Apriliyanti, Hermanto, Yusuf Puji, Iriawan, Nur, Irhamah, Fithriasari, Kartika, Purnami, Santi Wulan, Ferriastuti, Widiana
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A brain tumor is the 15th deadly disease in Indonesia according to the WHO in 2018. In medical treatment, brain tumors can be detected through Magnetic Resonance Imaging (MRI). The main problem is how to separate the brain tumor area as the Region of interest (ROI) with the other healthy part (Non-ROI) in the MRI. In the computational statistics, a method used in image segmentation is cluster analysis. Model-Based Clustering with Gaussian Mixture Model (GMM) is often used to find the cluster where the tumor is placed. The EM Algorithm and Bayesian coupled with Markov chain Monte Carlo (MCMC) could be used to optimize the GMM. However, both EM and Bayesian MCMC are assumed that the number of clusters is fixed. Therefore, to select the optimum number of clusters, we have to use certain cluster selection criteria. This process makes the segmentation quite complicated and is not automatic. This study tries to employ the GMM using Reversible Jump Markov Chain Monte Carlo Algorithm (GMM-RJMCMC) to segment the MRI-based brain tumor and compare it with the GMM-MCMC. The use of RJMCMC is expected to accelerate the calculation process, which can provide the number of optimum clusters automatically; moreover, the MRI image segmentation could become more adaptive. The result shows that from the Correct Classification Ratio (CCR), the GMM-RJMCMC could provide an equal segmentation results compared to the GMM-MCMC, however, GMM-RJMCMC has the advantage, that is faster in executing the algorithm, this makes GMM-RJMCMC more efficient in finding the optimum number of clusters.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.5139817