Clustering Services Based on Community Detection in Service Networks

Service-oriented computing has become a promising way to develop software by composing existing services on the Internet. However, with the increasing number of services on the Internet, how to match requirements and services becomes a difficult problem. Service clustering has been regarded as one o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2019, Vol.2019 (2019), p.1-11
Hauptverfasser: Zhou, Shiyuan, Wang, Yinglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Service-oriented computing has become a promising way to develop software by composing existing services on the Internet. However, with the increasing number of services on the Internet, how to match requirements and services becomes a difficult problem. Service clustering has been regarded as one of the effective ways to improve service matching. Related work shows that structure-related similarity metrics perform better than semantic-related similarity metrics in clustering services. Therefore, it is of great importance to propose much more useful structure-related similarity metrics to improve the performance of service clustering approaches. However, in the existing work, this kind of work is very rare. In this paper, we propose a SCAS (service clustering approach using structural metrics) to group services into different clusters. SCAS proposes a novel metric A2S (atomic service similarity) to characterize the atomic service similarity as a whole, which is a linear combination of C2S (composite-sharing similarity) and A3S (atomic-service-sharing similarity). Then, SCAS applies a guided community detection algorithm to group atomic services into clusters. Experimental results on a real-world data set show that our SCAS performs better than the existing approaches. Our A2S metric is promising in improving the performance of service clustering approaches.
ISSN:1024-123X
1563-5147
DOI:10.1155/2019/1495676