Computational Results on the Existence of Primitive Complete Normal Basis Generators
We present computational results which strongly support a conjecture of Morgan and Mullen (1996), which states that for every extension \(E/F\) of Galois fields there exists a primitive element of \(E\) which is completely normal over \(F\).
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present computational results which strongly support a conjecture of Morgan and Mullen (1996), which states that for every extension \(E/F\) of Galois fields there exists a primitive element of \(E\) which is completely normal over \(F\). |
---|---|
ISSN: | 2331-8422 |