An ultrasmall Ru2P nanoparticles–reduced graphene oxide hybrid: an efficient electrocatalyst for NH3 synthesis under ambient conditions

Industrial NH3 synthesis highly relies on the Haber–Bosch process which consumes a large amount of energy and emits a massive amount of CO2. Electrochemical N2 reduction is an eco-friendly and sustainable approach to realize NH3 synthesis under ambient conditions, but its implementation requires eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-01, Vol.8 (1), p.77-81
Hauptverfasser: Zhao, Runbo, Liu, Chuangwei, Zhang, Xiaoxue, Zhu, Xiaojuan, Wei, Peipei, Ji, Lei, Guo, Yanbao, Gao, Shuyan, Luo, Yonglan, Wang, Zhiming, Sun, Xuping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Industrial NH3 synthesis highly relies on the Haber–Bosch process which consumes a large amount of energy and emits a massive amount of CO2. Electrochemical N2 reduction is an eco-friendly and sustainable approach to realize NH3 synthesis under ambient conditions, but its implementation requires efficient electrocatalysts for the N2 reduction reaction. In this work, a hybrid of Ru2P nanoparticles and reduced graphene oxide is proposed as an efficient electrocatalyst for artificial N2-to-NH3 fixation with excellent selectivity under ambient conditions. Electrochemical tests in 0.1 M HCl show that such a hybrid achieves a large NH3 yield of 32.8 μg h−1 mgcat.−1 and a high faradaic efficiency of 13.04% at −0.05 V vs. the reversible hydrogen electrode. Furthermore, it also exhibits remarkable electrochemical and structural stability. Theoretical calculations reveal that Ru2P–rGO can efficiently catalyze NH3 synthesis with a low energy barrier.
ISSN:2050-7488
2050-7496
DOI:10.1039/c9ta10346e