Hardware footprints of S-box in lightweight symmetric block ciphers for IoT and CPS information security systems
The hardware footprint for S-box specification in lightweight block cipher as appropriate to IoT and CPS information security systems is presented in this paper. The S-box Boolean function in the lightweight block cipher is defined using the Reed-Muller structure. A Rule Based–Common Sub-structure S...
Gespeichert in:
Veröffentlicht in: | Integration (Amsterdam) 2019-11, Vol.69, p.266-278 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The hardware footprint for S-box specification in lightweight block cipher as appropriate to IoT and CPS information security systems is presented in this paper. The S-box Boolean function in the lightweight block cipher is defined using the Reed-Muller structure. A Rule Based–Common Sub-structure Sharing Optimization (RB-CSSO) algorithm has been proposed towards improving the performance efficiency of Reed-Muller structure. This novel hybrid RB-CSSO optimization mechanism first transforms the direct Positive Polarity Reed Muller (PPRM) S-box representation into Mixed Polarity Reed-Muller (MPRM) S-box architecture using local rule based transformation. Secondly, the Common Sub Term (CST) and Common Sub-expression (CSE) merging/elimination are employed over the resulting MPRM structure. The combined rule-based transformation and the common sub-function sharing demonstrate an overall reduction in area, delay and power of the Reed-Muller S-box structure. Both the theoretical analysis and the experimental verification demonstrate reduction in area and delay of S-box. Post synthesis results based on ASIC standard cell based implementations have been used to analyze area, delay and power values across Process, Voltage and Temperature (PVT) corners for a wide range of operating conditions. Extensive comparisons between direct PPRM and optimized MPRM implementations have been carried out. The post layout simulations of S-box structures realized show the advantages of lower area-delay product, power-area product and power-delay product. This work thus authenticates the application of proposed structure for lightweight, resource constrained security systems. Industry standard full suite of Cadence® tools have been employed in the simulations using 65 nm TCBN65GPLUS standard cells of TSMC technology library.
•Lightweight Cryptography; symmetric block ciphers; Substitution box; Reed-Muller structure, hardware architecture. |
---|---|
ISSN: | 0167-9260 1872-7522 |
DOI: | 10.1016/j.vlsi.2019.05.003 |