CD23-mediated transport of IgE/immune complexes across human intestinal epithelium: role of p38 MAPK

We previously reported that CD23/FcεRII (low-affinity IgE receptor) is expressed on human intestinal epithelial cells and is responsible for transepithelial transport of IgE. In this study, we compared the transport of IgE with that of immune complexes in both the apical-to-serosal and the serosal-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology: Gastrointestinal and liver physiology 2006-09, Vol.291 (3), p.33
Hauptverfasser: Tu, Yahong, Perdue, Mary H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We previously reported that CD23/FcεRII (low-affinity IgE receptor) is expressed on human intestinal epithelial cells and is responsible for transepithelial transport of IgE. In this study, we compared the transport of IgE with that of immune complexes in both the apical-to-serosal and the serosal-to-apical directions across HT29 epithelial cell layers and examined the effects of two p38 MAPK inhibitors, SKF86002 and SB203580, on the expression and function of CD23. Our study showed that both p38 MAPK inhibitors at 10 μM significantly inhibited constitutive and IL-4-upregulated CD23 protein expression in epithelial cells. Both inhibitors, in a concentration-dependent manner, also significantly reduced IgE binding and uptake into cells. Transepithelial transport of IgE and immune complexes across the epithelial barrier were similarly inhibited. IL-4 upregulated the phosphorylation and activity of p38 MAPK and the phosphorylation of the downstream substrate MAPKAPK-2 (MK-2). The inhibitors exerted effects in the pathway post the p38 MAPK; SB203580 significantly inhibited the phosphorylation of MK-2. Our results indicate that CD23 expression in these human intestinal epithelial cells is mediated through the p38 MAPK pathway and that inhibition of p38 MAPK consequently interferes with the transport of IgE and immune complexes across the intestinal epithelial barrier. [PUBLICATION ABSTRACT]
ISSN:0193-1857
1522-1547