Predicting FAD Interacting Residues with Feature Selection and Comprehensive Sequence Descriptors
The function of a flavoprotein is determined to a great extent by the binding sites on its surface that interacts with flavin adenine dinucleotide (FAD). Malfunction or dysregulation of FAD binding leads to a series of diseases. Therefore, accurately identifying FAD interacting residues (FIRs) provi...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on computational biology and bioinformatics 2019-11, Vol.16 (6), p.2046-2056 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The function of a flavoprotein is determined to a great extent by the binding sites on its surface that interacts with flavin adenine dinucleotide (FAD). Malfunction or dysregulation of FAD binding leads to a series of diseases. Therefore, accurately identifying FAD interacting residues (FIRs) provides insights into the molecular mechanisms of flavoprotein-related biological processes and disease progression. In this paper, a new computational method is proposed for identifying FIRs from protein sequences. Various sequence-derived discriminative features are explored. We analyze the distinctions of these features between FIRs and nonFIRs. We also investigate the predictive capabilities of both individual features and combinations of features. A relief algorithm followed by incremental feature selection (relief-IFS) is then adopted to search the optimal features. Finally, a random forest (RF) module is used to predict FIRs based on the optimal features. Using a 5-fold cross-validation test, the proposed method performs well, with a sensitivity of 0.847, a specificity of 0.933, an accuracy of 0.890, and a Matthews correlation coefficient (MCC) of 0.782, thereby outperforming previous methods. These results indicate that our method is relatively successful at predicting FIRs. |
---|---|
ISSN: | 1545-5963 1557-9964 |
DOI: | 10.1109/TCBB.2018.2824332 |