Predicting FAD Interacting Residues with Feature Selection and Comprehensive Sequence Descriptors

The function of a flavoprotein is determined to a great extent by the binding sites on its surface that interacts with flavin adenine dinucleotide (FAD). Malfunction or dysregulation of FAD binding leads to a series of diseases. Therefore, accurately identifying FAD interacting residues (FIRs) provi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics 2019-11, Vol.16 (6), p.2046-2056
Hauptverfasser: Yang, Runtao, Zhang, Chengjin, Gao, Rui, Zhang, Lina, Song, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The function of a flavoprotein is determined to a great extent by the binding sites on its surface that interacts with flavin adenine dinucleotide (FAD). Malfunction or dysregulation of FAD binding leads to a series of diseases. Therefore, accurately identifying FAD interacting residues (FIRs) provides insights into the molecular mechanisms of flavoprotein-related biological processes and disease progression. In this paper, a new computational method is proposed for identifying FIRs from protein sequences. Various sequence-derived discriminative features are explored. We analyze the distinctions of these features between FIRs and nonFIRs. We also investigate the predictive capabilities of both individual features and combinations of features. A relief algorithm followed by incremental feature selection (relief-IFS) is then adopted to search the optimal features. Finally, a random forest (RF) module is used to predict FIRs based on the optimal features. Using a 5-fold cross-validation test, the proposed method performs well, with a sensitivity of 0.847, a specificity of 0.933, an accuracy of 0.890, and a Matthews correlation coefficient (MCC) of 0.782, thereby outperforming previous methods. These results indicate that our method is relatively successful at predicting FIRs.
ISSN:1545-5963
1557-9964
DOI:10.1109/TCBB.2018.2824332