Simple proof of stationary phase method and application to oscillatory bifurcation problems

We consider the nonlinear eigenvalue problem −u′′(t)=λf(u(t)),u(t)>0,t∈I≔(−1,1),u(±1)=0, where f(u)=f1(u)=u3+sin(u3)∕u, f(u)=f2(u)=u+upsin(uq) (0≤p

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2020-01, Vol.190, p.111594, Article 111594
Hauptverfasser: Kato, Keiichi, Shibata, Tetsutaro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111594
container_title Nonlinear analysis
container_volume 190
creator Kato, Keiichi
Shibata, Tetsutaro
description We consider the nonlinear eigenvalue problem −u′′(t)=λf(u(t)),u(t)>0,t∈I≔(−1,1),u(±1)=0, where f(u)=f1(u)=u3+sin(u3)∕u, f(u)=f2(u)=u+upsin(uq) (0≤p
doi_str_mv 10.1016/j.na.2019.111594
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2324879404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X19302391</els_id><sourcerecordid>2324879404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-3bdd297b1da30e99463ca0befc7c2f6bb8b64ff853c40783505f2f29429962103</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaLgunr3WPDcmq-mjTdZ_IIFDyoIHkKSJmxK29QkK_jvzVqvwgxzmPfezHsAXCJYIYjYdV9NssIQ8QohVHN6BFaobUhZY1QfgxUkDJc1Ze-n4CzGHkKIGsJW4OPFjfNgijl4b4tcMcnk_CTDdzHvZDTFaNLOd4Wccs_z4PTvvki-8FG7YZDJZ6xydh_-VllLDWaM5-DEyiGai7-5Bm_3d6-bx3L7_PC0ud2WmrRtKonqOswbhTpJoOGcMqIlVMbqRmPLlGoVo9a2NdEUNi2pYW2xxZxizhlGkKzB1aKbD3_uTUyi9_sw5ZMCE0zbhlNIMwouKB18jMFYMQc3Zp8CQXGIUPRikuIQoVgizJSbhWLy91_OBJEdm0mbzgWjk-i8-5_8A8z4eWE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2324879404</pqid></control><display><type>article</type><title>Simple proof of stationary phase method and application to oscillatory bifurcation problems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kato, Keiichi ; Shibata, Tetsutaro</creator><creatorcontrib>Kato, Keiichi ; Shibata, Tetsutaro</creatorcontrib><description>We consider the nonlinear eigenvalue problem −u′′(t)=λf(u(t)),u(t)&gt;0,t∈I≔(−1,1),u(±1)=0, where f(u)=f1(u)=u3+sin(u3)∕u, f(u)=f2(u)=u+upsin(uq) (0≤p&lt;1, 1&lt;q≤p+2) and λ&gt;0 is a bifurcation parameter. It is known that, in this case, λ is parameterized by the maximum norm α=‖uλ‖∞ of the solution uλ associated with λ and is written as λ=λ(α). We simplify the argument of the stationary phase method and show the asymptotic formulas for λ(α) for f1(u) and f2(u) as α→∞ and α→0. In particular, the shape of bifurcation diagram of λ(α) for f1(u) seems to be new.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2019.111594</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Asymptotic methods ; Bifurcations ; Eigenvalues ; Global structure ; Nonlinear eigenvalue problems ; Oscillatory bifurcation</subject><ispartof>Nonlinear analysis, 2020-01, Vol.190, p.111594, Article 111594</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-3bdd297b1da30e99463ca0befc7c2f6bb8b64ff853c40783505f2f29429962103</citedby><cites>FETCH-LOGICAL-c388t-3bdd297b1da30e99463ca0befc7c2f6bb8b64ff853c40783505f2f29429962103</cites><orcidid>0000-0001-6930-5126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2019.111594$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kato, Keiichi</creatorcontrib><creatorcontrib>Shibata, Tetsutaro</creatorcontrib><title>Simple proof of stationary phase method and application to oscillatory bifurcation problems</title><title>Nonlinear analysis</title><description>We consider the nonlinear eigenvalue problem −u′′(t)=λf(u(t)),u(t)&gt;0,t∈I≔(−1,1),u(±1)=0, where f(u)=f1(u)=u3+sin(u3)∕u, f(u)=f2(u)=u+upsin(uq) (0≤p&lt;1, 1&lt;q≤p+2) and λ&gt;0 is a bifurcation parameter. It is known that, in this case, λ is parameterized by the maximum norm α=‖uλ‖∞ of the solution uλ associated with λ and is written as λ=λ(α). We simplify the argument of the stationary phase method and show the asymptotic formulas for λ(α) for f1(u) and f2(u) as α→∞ and α→0. In particular, the shape of bifurcation diagram of λ(α) for f1(u) seems to be new.</description><subject>Asymptotic methods</subject><subject>Bifurcations</subject><subject>Eigenvalues</subject><subject>Global structure</subject><subject>Nonlinear eigenvalue problems</subject><subject>Oscillatory bifurcation</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAQDaLgunr3WPDcmq-mjTdZ_IIFDyoIHkKSJmxK29QkK_jvzVqvwgxzmPfezHsAXCJYIYjYdV9NssIQ8QohVHN6BFaobUhZY1QfgxUkDJc1Ze-n4CzGHkKIGsJW4OPFjfNgijl4b4tcMcnk_CTDdzHvZDTFaNLOd4Wccs_z4PTvvki-8FG7YZDJZ6xydh_-VllLDWaM5-DEyiGai7-5Bm_3d6-bx3L7_PC0ud2WmrRtKonqOswbhTpJoOGcMqIlVMbqRmPLlGoVo9a2NdEUNi2pYW2xxZxizhlGkKzB1aKbD3_uTUyi9_sw5ZMCE0zbhlNIMwouKB18jMFYMQc3Zp8CQXGIUPRikuIQoVgizJSbhWLy91_OBJEdm0mbzgWjk-i8-5_8A8z4eWE</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Kato, Keiichi</creator><creator>Shibata, Tetsutaro</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6930-5126</orcidid></search><sort><creationdate>202001</creationdate><title>Simple proof of stationary phase method and application to oscillatory bifurcation problems</title><author>Kato, Keiichi ; Shibata, Tetsutaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-3bdd297b1da30e99463ca0befc7c2f6bb8b64ff853c40783505f2f29429962103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymptotic methods</topic><topic>Bifurcations</topic><topic>Eigenvalues</topic><topic>Global structure</topic><topic>Nonlinear eigenvalue problems</topic><topic>Oscillatory bifurcation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kato, Keiichi</creatorcontrib><creatorcontrib>Shibata, Tetsutaro</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kato, Keiichi</au><au>Shibata, Tetsutaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple proof of stationary phase method and application to oscillatory bifurcation problems</atitle><jtitle>Nonlinear analysis</jtitle><date>2020-01</date><risdate>2020</risdate><volume>190</volume><spage>111594</spage><pages>111594-</pages><artnum>111594</artnum><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>We consider the nonlinear eigenvalue problem −u′′(t)=λf(u(t)),u(t)&gt;0,t∈I≔(−1,1),u(±1)=0, where f(u)=f1(u)=u3+sin(u3)∕u, f(u)=f2(u)=u+upsin(uq) (0≤p&lt;1, 1&lt;q≤p+2) and λ&gt;0 is a bifurcation parameter. It is known that, in this case, λ is parameterized by the maximum norm α=‖uλ‖∞ of the solution uλ associated with λ and is written as λ=λ(α). We simplify the argument of the stationary phase method and show the asymptotic formulas for λ(α) for f1(u) and f2(u) as α→∞ and α→0. In particular, the shape of bifurcation diagram of λ(α) for f1(u) seems to be new.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2019.111594</doi><orcidid>https://orcid.org/0000-0001-6930-5126</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2020-01, Vol.190, p.111594, Article 111594
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_journals_2324879404
source Access via ScienceDirect (Elsevier)
subjects Asymptotic methods
Bifurcations
Eigenvalues
Global structure
Nonlinear eigenvalue problems
Oscillatory bifurcation
title Simple proof of stationary phase method and application to oscillatory bifurcation problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20proof%20of%20stationary%20phase%20method%20and%20application%20to%20oscillatory%20bifurcation%20problems&rft.jtitle=Nonlinear%20analysis&rft.au=Kato,%20Keiichi&rft.date=2020-01&rft.volume=190&rft.spage=111594&rft.pages=111594-&rft.artnum=111594&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2019.111594&rft_dat=%3Cproquest_cross%3E2324879404%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2324879404&rft_id=info:pmid/&rft_els_id=S0362546X19302391&rfr_iscdi=true