Simple proof of stationary phase method and application to oscillatory bifurcation problems
We consider the nonlinear eigenvalue problem −u′′(t)=λf(u(t)),u(t)>0,t∈I≔(−1,1),u(±1)=0, where f(u)=f1(u)=u3+sin(u3)∕u, f(u)=f2(u)=u+upsin(uq) (0≤p
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2020-01, Vol.190, p.111594, Article 111594 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 111594 |
container_title | Nonlinear analysis |
container_volume | 190 |
creator | Kato, Keiichi Shibata, Tetsutaro |
description | We consider the nonlinear eigenvalue problem −u′′(t)=λf(u(t)),u(t)>0,t∈I≔(−1,1),u(±1)=0, where f(u)=f1(u)=u3+sin(u3)∕u, f(u)=f2(u)=u+upsin(uq) (0≤p |
doi_str_mv | 10.1016/j.na.2019.111594 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2324879404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X19302391</els_id><sourcerecordid>2324879404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-3bdd297b1da30e99463ca0befc7c2f6bb8b64ff853c40783505f2f29429962103</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaLgunr3WPDcmq-mjTdZ_IIFDyoIHkKSJmxK29QkK_jvzVqvwgxzmPfezHsAXCJYIYjYdV9NssIQ8QohVHN6BFaobUhZY1QfgxUkDJc1Ze-n4CzGHkKIGsJW4OPFjfNgijl4b4tcMcnk_CTDdzHvZDTFaNLOd4Wccs_z4PTvvki-8FG7YZDJZ6xydh_-VllLDWaM5-DEyiGai7-5Bm_3d6-bx3L7_PC0ud2WmrRtKonqOswbhTpJoOGcMqIlVMbqRmPLlGoVo9a2NdEUNi2pYW2xxZxizhlGkKzB1aKbD3_uTUyi9_sw5ZMCE0zbhlNIMwouKB18jMFYMQc3Zp8CQXGIUPRikuIQoVgizJSbhWLy91_OBJEdm0mbzgWjk-i8-5_8A8z4eWE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2324879404</pqid></control><display><type>article</type><title>Simple proof of stationary phase method and application to oscillatory bifurcation problems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kato, Keiichi ; Shibata, Tetsutaro</creator><creatorcontrib>Kato, Keiichi ; Shibata, Tetsutaro</creatorcontrib><description>We consider the nonlinear eigenvalue problem −u′′(t)=λf(u(t)),u(t)>0,t∈I≔(−1,1),u(±1)=0, where f(u)=f1(u)=u3+sin(u3)∕u, f(u)=f2(u)=u+upsin(uq) (0≤p<1, 1<q≤p+2) and λ>0 is a bifurcation parameter. It is known that, in this case, λ is parameterized by the maximum norm α=‖uλ‖∞ of the solution uλ associated with λ and is written as λ=λ(α). We simplify the argument of the stationary phase method and show the asymptotic formulas for λ(α) for f1(u) and f2(u) as α→∞ and α→0. In particular, the shape of bifurcation diagram of λ(α) for f1(u) seems to be new.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2019.111594</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Asymptotic methods ; Bifurcations ; Eigenvalues ; Global structure ; Nonlinear eigenvalue problems ; Oscillatory bifurcation</subject><ispartof>Nonlinear analysis, 2020-01, Vol.190, p.111594, Article 111594</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-3bdd297b1da30e99463ca0befc7c2f6bb8b64ff853c40783505f2f29429962103</citedby><cites>FETCH-LOGICAL-c388t-3bdd297b1da30e99463ca0befc7c2f6bb8b64ff853c40783505f2f29429962103</cites><orcidid>0000-0001-6930-5126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2019.111594$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kato, Keiichi</creatorcontrib><creatorcontrib>Shibata, Tetsutaro</creatorcontrib><title>Simple proof of stationary phase method and application to oscillatory bifurcation problems</title><title>Nonlinear analysis</title><description>We consider the nonlinear eigenvalue problem −u′′(t)=λf(u(t)),u(t)>0,t∈I≔(−1,1),u(±1)=0, where f(u)=f1(u)=u3+sin(u3)∕u, f(u)=f2(u)=u+upsin(uq) (0≤p<1, 1<q≤p+2) and λ>0 is a bifurcation parameter. It is known that, in this case, λ is parameterized by the maximum norm α=‖uλ‖∞ of the solution uλ associated with λ and is written as λ=λ(α). We simplify the argument of the stationary phase method and show the asymptotic formulas for λ(α) for f1(u) and f2(u) as α→∞ and α→0. In particular, the shape of bifurcation diagram of λ(α) for f1(u) seems to be new.</description><subject>Asymptotic methods</subject><subject>Bifurcations</subject><subject>Eigenvalues</subject><subject>Global structure</subject><subject>Nonlinear eigenvalue problems</subject><subject>Oscillatory bifurcation</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAQDaLgunr3WPDcmq-mjTdZ_IIFDyoIHkKSJmxK29QkK_jvzVqvwgxzmPfezHsAXCJYIYjYdV9NssIQ8QohVHN6BFaobUhZY1QfgxUkDJc1Ze-n4CzGHkKIGsJW4OPFjfNgijl4b4tcMcnk_CTDdzHvZDTFaNLOd4Wccs_z4PTvvki-8FG7YZDJZ6xydh_-VllLDWaM5-DEyiGai7-5Bm_3d6-bx3L7_PC0ud2WmrRtKonqOswbhTpJoOGcMqIlVMbqRmPLlGoVo9a2NdEUNi2pYW2xxZxizhlGkKzB1aKbD3_uTUyi9_sw5ZMCE0zbhlNIMwouKB18jMFYMQc3Zp8CQXGIUPRikuIQoVgizJSbhWLy91_OBJEdm0mbzgWjk-i8-5_8A8z4eWE</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Kato, Keiichi</creator><creator>Shibata, Tetsutaro</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6930-5126</orcidid></search><sort><creationdate>202001</creationdate><title>Simple proof of stationary phase method and application to oscillatory bifurcation problems</title><author>Kato, Keiichi ; Shibata, Tetsutaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-3bdd297b1da30e99463ca0befc7c2f6bb8b64ff853c40783505f2f29429962103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymptotic methods</topic><topic>Bifurcations</topic><topic>Eigenvalues</topic><topic>Global structure</topic><topic>Nonlinear eigenvalue problems</topic><topic>Oscillatory bifurcation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kato, Keiichi</creatorcontrib><creatorcontrib>Shibata, Tetsutaro</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kato, Keiichi</au><au>Shibata, Tetsutaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple proof of stationary phase method and application to oscillatory bifurcation problems</atitle><jtitle>Nonlinear analysis</jtitle><date>2020-01</date><risdate>2020</risdate><volume>190</volume><spage>111594</spage><pages>111594-</pages><artnum>111594</artnum><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>We consider the nonlinear eigenvalue problem −u′′(t)=λf(u(t)),u(t)>0,t∈I≔(−1,1),u(±1)=0, where f(u)=f1(u)=u3+sin(u3)∕u, f(u)=f2(u)=u+upsin(uq) (0≤p<1, 1<q≤p+2) and λ>0 is a bifurcation parameter. It is known that, in this case, λ is parameterized by the maximum norm α=‖uλ‖∞ of the solution uλ associated with λ and is written as λ=λ(α). We simplify the argument of the stationary phase method and show the asymptotic formulas for λ(α) for f1(u) and f2(u) as α→∞ and α→0. In particular, the shape of bifurcation diagram of λ(α) for f1(u) seems to be new.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2019.111594</doi><orcidid>https://orcid.org/0000-0001-6930-5126</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2020-01, Vol.190, p.111594, Article 111594 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_journals_2324879404 |
source | Access via ScienceDirect (Elsevier) |
subjects | Asymptotic methods Bifurcations Eigenvalues Global structure Nonlinear eigenvalue problems Oscillatory bifurcation |
title | Simple proof of stationary phase method and application to oscillatory bifurcation problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20proof%20of%20stationary%20phase%20method%20and%20application%20to%20oscillatory%20bifurcation%20problems&rft.jtitle=Nonlinear%20analysis&rft.au=Kato,%20Keiichi&rft.date=2020-01&rft.volume=190&rft.spage=111594&rft.pages=111594-&rft.artnum=111594&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2019.111594&rft_dat=%3Cproquest_cross%3E2324879404%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2324879404&rft_id=info:pmid/&rft_els_id=S0362546X19302391&rfr_iscdi=true |