Application of Matrix Decompositions for Matrix Canonization

The problem of solving overdetermined, underdetermined, singular, or ill conditioned SLAEs using matrix canonization is considered. A modification of an existing canonization algorithm based on matrix decomposition is proposed. Formulas using LU decomposition, QR decomposition, LQ decomposition, or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2019-11, Vol.59 (11), p.1759-1770
Hauptverfasser: Volkov, V. G., Dem’yanov, D. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1770
container_issue 11
container_start_page 1759
container_title Computational mathematics and mathematical physics
container_volume 59
creator Volkov, V. G.
Dem’yanov, D. N.
description The problem of solving overdetermined, underdetermined, singular, or ill conditioned SLAEs using matrix canonization is considered. A modification of an existing canonization algorithm based on matrix decomposition is proposed. Formulas using LU decomposition, QR decomposition, LQ decomposition, or singular value decomposition, depending on the properties of the given matrix, are obtained. A method for evaluating the condition number of the canonization problem is proposed. It is based on computing the norm of the matrices obtained as a result of canonization; this method does not require the original matrix to be inverted. A general step-by-step matrix canonization algorithm is described and implemented in MATLAB. The implementation is tested on a set of 100 000 randomly generated matrices. The testing results confirmed the validity and efficiency of the proposed algorithm.
doi_str_mv 10.1134/S0965542519110149
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2323620211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2323620211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-9bc4b2bd9d5e10ec01d2b9f913ef4b0545a8dd0e00e82b8fb4f8131bb8ccf1053</originalsourceid><addsrcrecordid>eNp1kE9LxDAUxIMoWFc_gLeC5-p7-UcCXpaqq7DiQT2XJk2ky25Tky6on97WVTyIpwcz85sHQ8gpwjki4xePoKUQnArUiIBc75EMhRCFlJLuk2yyi8k_JEcprQBQasUycjnv-3Vr66ENXR58fl8PsX3Lr5wNmz6kdtJT7kP8ccq6C1378QUckwNfr5M7-b4z8nxz_VTeFsuHxV05XxaWSjUU2lhuqGl0IxyCs4ANNdprZM5zA4KLWjUNOACnqFHecK-QoTHKWo8g2Iyc7Xr7GF63Lg3VKmxjN76sKKNMUqDjCDOCu5SNIaXofNXHdlPH9wqhmkaq_ow0MnTHpDHbvbj42_w_9AmHz2jb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2323620211</pqid></control><display><type>article</type><title>Application of Matrix Decompositions for Matrix Canonization</title><source>SpringerLink Journals</source><creator>Volkov, V. G. ; Dem’yanov, D. N.</creator><creatorcontrib>Volkov, V. G. ; Dem’yanov, D. N.</creatorcontrib><description>The problem of solving overdetermined, underdetermined, singular, or ill conditioned SLAEs using matrix canonization is considered. A modification of an existing canonization algorithm based on matrix decomposition is proposed. Formulas using LU decomposition, QR decomposition, LQ decomposition, or singular value decomposition, depending on the properties of the given matrix, are obtained. A method for evaluating the condition number of the canonization problem is proposed. It is based on computing the norm of the matrices obtained as a result of canonization; this method does not require the original matrix to be inverted. A general step-by-step matrix canonization algorithm is described and implemented in MATLAB. The implementation is tested on a set of 100 000 randomly generated matrices. The testing results confirmed the validity and efficiency of the proposed algorithm.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542519110149</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Computational Mathematics and Numerical Analysis ; Decomposition ; Mathematics ; Mathematics and Statistics ; Singular value decomposition</subject><ispartof>Computational mathematics and mathematical physics, 2019-11, Vol.59 (11), p.1759-1770</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-9bc4b2bd9d5e10ec01d2b9f913ef4b0545a8dd0e00e82b8fb4f8131bb8ccf1053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542519110149$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542519110149$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Volkov, V. G.</creatorcontrib><creatorcontrib>Dem’yanov, D. N.</creatorcontrib><title>Application of Matrix Decompositions for Matrix Canonization</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>The problem of solving overdetermined, underdetermined, singular, or ill conditioned SLAEs using matrix canonization is considered. A modification of an existing canonization algorithm based on matrix decomposition is proposed. Formulas using LU decomposition, QR decomposition, LQ decomposition, or singular value decomposition, depending on the properties of the given matrix, are obtained. A method for evaluating the condition number of the canonization problem is proposed. It is based on computing the norm of the matrices obtained as a result of canonization; this method does not require the original matrix to be inverted. A general step-by-step matrix canonization algorithm is described and implemented in MATLAB. The implementation is tested on a set of 100 000 randomly generated matrices. The testing results confirmed the validity and efficiency of the proposed algorithm.</description><subject>Algorithms</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Decomposition</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Singular value decomposition</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAUxIMoWFc_gLeC5-p7-UcCXpaqq7DiQT2XJk2ky25Tky6on97WVTyIpwcz85sHQ8gpwjki4xePoKUQnArUiIBc75EMhRCFlJLuk2yyi8k_JEcprQBQasUycjnv-3Vr66ENXR58fl8PsX3Lr5wNmz6kdtJT7kP8ccq6C1378QUckwNfr5M7-b4z8nxz_VTeFsuHxV05XxaWSjUU2lhuqGl0IxyCs4ANNdprZM5zA4KLWjUNOACnqFHecK-QoTHKWo8g2Iyc7Xr7GF63Lg3VKmxjN76sKKNMUqDjCDOCu5SNIaXofNXHdlPH9wqhmkaq_ow0MnTHpDHbvbj42_w_9AmHz2jb</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Volkov, V. G.</creator><creator>Dem’yanov, D. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20191101</creationdate><title>Application of Matrix Decompositions for Matrix Canonization</title><author>Volkov, V. G. ; Dem’yanov, D. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-9bc4b2bd9d5e10ec01d2b9f913ef4b0545a8dd0e00e82b8fb4f8131bb8ccf1053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Decomposition</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Singular value decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volkov, V. G.</creatorcontrib><creatorcontrib>Dem’yanov, D. N.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volkov, V. G.</au><au>Dem’yanov, D. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Matrix Decompositions for Matrix Canonization</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>59</volume><issue>11</issue><spage>1759</spage><epage>1770</epage><pages>1759-1770</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>The problem of solving overdetermined, underdetermined, singular, or ill conditioned SLAEs using matrix canonization is considered. A modification of an existing canonization algorithm based on matrix decomposition is proposed. Formulas using LU decomposition, QR decomposition, LQ decomposition, or singular value decomposition, depending on the properties of the given matrix, are obtained. A method for evaluating the condition number of the canonization problem is proposed. It is based on computing the norm of the matrices obtained as a result of canonization; this method does not require the original matrix to be inverted. A general step-by-step matrix canonization algorithm is described and implemented in MATLAB. The implementation is tested on a set of 100 000 randomly generated matrices. The testing results confirmed the validity and efficiency of the proposed algorithm.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542519110149</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5425
ispartof Computational mathematics and mathematical physics, 2019-11, Vol.59 (11), p.1759-1770
issn 0965-5425
1555-6662
language eng
recordid cdi_proquest_journals_2323620211
source SpringerLink Journals
subjects Algorithms
Computational Mathematics and Numerical Analysis
Decomposition
Mathematics
Mathematics and Statistics
Singular value decomposition
title Application of Matrix Decompositions for Matrix Canonization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A10%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Matrix%20Decompositions%20for%20Matrix%20Canonization&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Volkov,%20V.%20G.&rft.date=2019-11-01&rft.volume=59&rft.issue=11&rft.spage=1759&rft.epage=1770&rft.pages=1759-1770&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542519110149&rft_dat=%3Cproquest_cross%3E2323620211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2323620211&rft_id=info:pmid/&rfr_iscdi=true