Application of Matrix Decompositions for Matrix Canonization
The problem of solving overdetermined, underdetermined, singular, or ill conditioned SLAEs using matrix canonization is considered. A modification of an existing canonization algorithm based on matrix decomposition is proposed. Formulas using LU decomposition, QR decomposition, LQ decomposition, or...
Gespeichert in:
Veröffentlicht in: | Computational mathematics and mathematical physics 2019-11, Vol.59 (11), p.1759-1770 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1770 |
---|---|
container_issue | 11 |
container_start_page | 1759 |
container_title | Computational mathematics and mathematical physics |
container_volume | 59 |
creator | Volkov, V. G. Dem’yanov, D. N. |
description | The problem of solving overdetermined, underdetermined, singular, or ill conditioned SLAEs using matrix canonization is considered. A modification of an existing canonization algorithm based on matrix decomposition is proposed. Formulas using LU decomposition, QR decomposition, LQ decomposition, or singular value decomposition, depending on the properties of the given matrix, are obtained. A method for evaluating the condition number of the canonization problem is proposed. It is based on computing the norm of the matrices obtained as a result of canonization; this method does not require the original matrix to be inverted. A general step-by-step matrix canonization algorithm is described and implemented in MATLAB. The implementation is tested on a set of 100 000 randomly generated matrices. The testing results confirmed the validity and efficiency of the proposed algorithm. |
doi_str_mv | 10.1134/S0965542519110149 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2323620211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2323620211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-9bc4b2bd9d5e10ec01d2b9f913ef4b0545a8dd0e00e82b8fb4f8131bb8ccf1053</originalsourceid><addsrcrecordid>eNp1kE9LxDAUxIMoWFc_gLeC5-p7-UcCXpaqq7DiQT2XJk2ky25Tky6on97WVTyIpwcz85sHQ8gpwjki4xePoKUQnArUiIBc75EMhRCFlJLuk2yyi8k_JEcprQBQasUycjnv-3Vr66ENXR58fl8PsX3Lr5wNmz6kdtJT7kP8ccq6C1378QUckwNfr5M7-b4z8nxz_VTeFsuHxV05XxaWSjUU2lhuqGl0IxyCs4ANNdprZM5zA4KLWjUNOACnqFHecK-QoTHKWo8g2Iyc7Xr7GF63Lg3VKmxjN76sKKNMUqDjCDOCu5SNIaXofNXHdlPH9wqhmkaq_ow0MnTHpDHbvbj42_w_9AmHz2jb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2323620211</pqid></control><display><type>article</type><title>Application of Matrix Decompositions for Matrix Canonization</title><source>SpringerLink Journals</source><creator>Volkov, V. G. ; Dem’yanov, D. N.</creator><creatorcontrib>Volkov, V. G. ; Dem’yanov, D. N.</creatorcontrib><description>The problem of solving overdetermined, underdetermined, singular, or ill conditioned SLAEs using matrix canonization is considered. A modification of an existing canonization algorithm based on matrix decomposition is proposed. Formulas using LU decomposition, QR decomposition, LQ decomposition, or singular value decomposition, depending on the properties of the given matrix, are obtained. A method for evaluating the condition number of the canonization problem is proposed. It is based on computing the norm of the matrices obtained as a result of canonization; this method does not require the original matrix to be inverted. A general step-by-step matrix canonization algorithm is described and implemented in MATLAB. The implementation is tested on a set of 100 000 randomly generated matrices. The testing results confirmed the validity and efficiency of the proposed algorithm.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542519110149</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Computational Mathematics and Numerical Analysis ; Decomposition ; Mathematics ; Mathematics and Statistics ; Singular value decomposition</subject><ispartof>Computational mathematics and mathematical physics, 2019-11, Vol.59 (11), p.1759-1770</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-9bc4b2bd9d5e10ec01d2b9f913ef4b0545a8dd0e00e82b8fb4f8131bb8ccf1053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542519110149$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542519110149$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Volkov, V. G.</creatorcontrib><creatorcontrib>Dem’yanov, D. N.</creatorcontrib><title>Application of Matrix Decompositions for Matrix Canonization</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>The problem of solving overdetermined, underdetermined, singular, or ill conditioned SLAEs using matrix canonization is considered. A modification of an existing canonization algorithm based on matrix decomposition is proposed. Formulas using LU decomposition, QR decomposition, LQ decomposition, or singular value decomposition, depending on the properties of the given matrix, are obtained. A method for evaluating the condition number of the canonization problem is proposed. It is based on computing the norm of the matrices obtained as a result of canonization; this method does not require the original matrix to be inverted. A general step-by-step matrix canonization algorithm is described and implemented in MATLAB. The implementation is tested on a set of 100 000 randomly generated matrices. The testing results confirmed the validity and efficiency of the proposed algorithm.</description><subject>Algorithms</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Decomposition</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Singular value decomposition</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAUxIMoWFc_gLeC5-p7-UcCXpaqq7DiQT2XJk2ky25Tky6on97WVTyIpwcz85sHQ8gpwjki4xePoKUQnArUiIBc75EMhRCFlJLuk2yyi8k_JEcprQBQasUycjnv-3Vr66ENXR58fl8PsX3Lr5wNmz6kdtJT7kP8ccq6C1378QUckwNfr5M7-b4z8nxz_VTeFsuHxV05XxaWSjUU2lhuqGl0IxyCs4ANNdprZM5zA4KLWjUNOACnqFHecK-QoTHKWo8g2Iyc7Xr7GF63Lg3VKmxjN76sKKNMUqDjCDOCu5SNIaXofNXHdlPH9wqhmkaq_ow0MnTHpDHbvbj42_w_9AmHz2jb</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Volkov, V. G.</creator><creator>Dem’yanov, D. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20191101</creationdate><title>Application of Matrix Decompositions for Matrix Canonization</title><author>Volkov, V. G. ; Dem’yanov, D. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-9bc4b2bd9d5e10ec01d2b9f913ef4b0545a8dd0e00e82b8fb4f8131bb8ccf1053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Decomposition</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Singular value decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volkov, V. G.</creatorcontrib><creatorcontrib>Dem’yanov, D. N.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volkov, V. G.</au><au>Dem’yanov, D. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Matrix Decompositions for Matrix Canonization</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>59</volume><issue>11</issue><spage>1759</spage><epage>1770</epage><pages>1759-1770</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>The problem of solving overdetermined, underdetermined, singular, or ill conditioned SLAEs using matrix canonization is considered. A modification of an existing canonization algorithm based on matrix decomposition is proposed. Formulas using LU decomposition, QR decomposition, LQ decomposition, or singular value decomposition, depending on the properties of the given matrix, are obtained. A method for evaluating the condition number of the canonization problem is proposed. It is based on computing the norm of the matrices obtained as a result of canonization; this method does not require the original matrix to be inverted. A general step-by-step matrix canonization algorithm is described and implemented in MATLAB. The implementation is tested on a set of 100 000 randomly generated matrices. The testing results confirmed the validity and efficiency of the proposed algorithm.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542519110149</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-5425 |
ispartof | Computational mathematics and mathematical physics, 2019-11, Vol.59 (11), p.1759-1770 |
issn | 0965-5425 1555-6662 |
language | eng |
recordid | cdi_proquest_journals_2323620211 |
source | SpringerLink Journals |
subjects | Algorithms Computational Mathematics and Numerical Analysis Decomposition Mathematics Mathematics and Statistics Singular value decomposition |
title | Application of Matrix Decompositions for Matrix Canonization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A10%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Matrix%20Decompositions%20for%20Matrix%20Canonization&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Volkov,%20V.%20G.&rft.date=2019-11-01&rft.volume=59&rft.issue=11&rft.spage=1759&rft.epage=1770&rft.pages=1759-1770&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542519110149&rft_dat=%3Cproquest_cross%3E2323620211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2323620211&rft_id=info:pmid/&rfr_iscdi=true |