Application of Matrix Decompositions for Matrix Canonization

The problem of solving overdetermined, underdetermined, singular, or ill conditioned SLAEs using matrix canonization is considered. A modification of an existing canonization algorithm based on matrix decomposition is proposed. Formulas using LU decomposition, QR decomposition, LQ decomposition, or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2019-11, Vol.59 (11), p.1759-1770
Hauptverfasser: Volkov, V. G., Dem’yanov, D. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of solving overdetermined, underdetermined, singular, or ill conditioned SLAEs using matrix canonization is considered. A modification of an existing canonization algorithm based on matrix decomposition is proposed. Formulas using LU decomposition, QR decomposition, LQ decomposition, or singular value decomposition, depending on the properties of the given matrix, are obtained. A method for evaluating the condition number of the canonization problem is proposed. It is based on computing the norm of the matrices obtained as a result of canonization; this method does not require the original matrix to be inverted. A general step-by-step matrix canonization algorithm is described and implemented in MATLAB. The implementation is tested on a set of 100 000 randomly generated matrices. The testing results confirmed the validity and efficiency of the proposed algorithm.
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542519110149