Surface curvature-dependent adsorption and aggregation of fluorescein isothiocyanate on gold nanoparticles

The interaction between metallic nanoparticles and fluorescent molecules and its influence on the optical properties of the particles/molecules have been intensively investigated because of their biology and sensing applications. Here, we studied the adsorption and aggregation of a commonly used dye...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2019-12, Vol.21 (48), p.26598-2665
Hauptverfasser: Xue, Shan, Liu, Xinxin, Chen, Shun-Li, Gan, Wei, Yuan, Qunhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The interaction between metallic nanoparticles and fluorescent molecules and its influence on the optical properties of the particles/molecules have been intensively investigated because of their biology and sensing applications. Here, we studied the adsorption and aggregation of a commonly used dye, fluorescein isothiocyanate (FITC), on gold nanoparticles of various diameters. It was observed that the adsorption of FITC on relatively large gold nanoparticles (≥15 nm in diameter) induced quenching in the two-photon fluorescence (TPF) emission from the FITC molecules, while smaller-sized gold nanoparticles (1.6 nm) had no such effect. This difference was interpreted by the fluorescence resonance energy transfer (FRET) between the FITC molecules and the larger gold nanoparticles. At the same time, it was observed that the ratio of TPF quenching was notably higher than the ratio of the FITC molecules chemically adsorbed on the large gold particles. This unexpected observation revealed that the aggregation-induced fluorescence quenching also contributed significantly to the attenuation of the TPF emission. Time-dependent TPF attenuation during the interaction of FITC and the larger gold nanoparticles was recorded and used to confirm this interpretation. With this experimental evidence, a clear picture of the interaction of the FITC molecules on the gold surface was presented: FITC molecules chemically adsorbed on the small gold nanoparticles. However, the relatively larger surface curvature hindered the aggregation of the FITC molecules on the small gold nanoparticles. On the surface of the larger gold nanoparticles, both adsorption and aggregation occured. The influence of the surface curvature on the interfacial structure of the adsorbed molecules on nanoparticles was discussed. Time-dependent TPF measurements revealed the kinetics of the adsorption and aggregation processes of FITC on gold nanoparticles.
ISSN:1463-9076
1463-9084
DOI:10.1039/c9cp04939h