Level sets of the Hyperbolic Derivative for analytic self-maps of the unit disk
Let the function \(\varphi\) be holomorphic in the unit disk \(\mathbb{D}\) of the complex plane \(\mathbb{C}\) and let \(\varphi (\mathbb{D})\subset \mathbb{D}\). We study the level sets and the critical points of the hyperbolic derivative of \(\varphi\), $$|D_{\varphi}(z)|:=\frac{(1-|z|^2)|\varphi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Arango, Juan Arbeláez, Hugo Mejía, Diego |
description | Let the function \(\varphi\) be holomorphic in the unit disk \(\mathbb{D}\) of the complex plane \(\mathbb{C}\) and let \(\varphi (\mathbb{D})\subset \mathbb{D}\). We study the level sets and the critical points of the hyperbolic derivative of \(\varphi\), $$|D_{\varphi}(z)|:=\frac{(1-|z|^2)|\varphi'(z)|}{1-|\varphi(z)|^2}.$$ In particular, we show how the Schwarzian derivative of \(\varphi\) reveals the nature of the critical points. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2323074583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2323074583</sourcerecordid><originalsourceid>FETCH-proquest_journals_23230745833</originalsourceid><addsrcrecordid>eNqNjL0KwjAURoMgWLTvcMG5EJPWdveHDoKLe4l6g6mxqblpoG9vB3F2-uBwzjdjiZByk1W5EAuWErWcc7EtRVHIhJ1PGNECYSBwGsIDoR579FdnzQ326E1UwUQE7TyoTtkxTJzQ6uyl-l8zdCbA3dBzxeZaWcL0u0u2Ph4uuzrrvXsPSKFp3eCnH2qEFJKXeVFJ-Z_1Ae07PjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2323074583</pqid></control><display><type>article</type><title>Level sets of the Hyperbolic Derivative for analytic self-maps of the unit disk</title><source>Free E- Journals</source><creator>Arango, Juan ; Arbeláez, Hugo ; Mejía, Diego</creator><creatorcontrib>Arango, Juan ; Arbeláez, Hugo ; Mejía, Diego</creatorcontrib><description>Let the function \(\varphi\) be holomorphic in the unit disk \(\mathbb{D}\) of the complex plane \(\mathbb{C}\) and let \(\varphi (\mathbb{D})\subset \mathbb{D}\). We study the level sets and the critical points of the hyperbolic derivative of \(\varphi\), $$|D_{\varphi}(z)|:=\frac{(1-|z|^2)|\varphi'(z)|}{1-|\varphi(z)|^2}.$$ In particular, we show how the Schwarzian derivative of \(\varphi\) reveals the nature of the critical points.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Critical point</subject><ispartof>arXiv.org, 2019-12</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Arango, Juan</creatorcontrib><creatorcontrib>Arbeláez, Hugo</creatorcontrib><creatorcontrib>Mejía, Diego</creatorcontrib><title>Level sets of the Hyperbolic Derivative for analytic self-maps of the unit disk</title><title>arXiv.org</title><description>Let the function \(\varphi\) be holomorphic in the unit disk \(\mathbb{D}\) of the complex plane \(\mathbb{C}\) and let \(\varphi (\mathbb{D})\subset \mathbb{D}\). We study the level sets and the critical points of the hyperbolic derivative of \(\varphi\), $$|D_{\varphi}(z)|:=\frac{(1-|z|^2)|\varphi'(z)|}{1-|\varphi(z)|^2}.$$ In particular, we show how the Schwarzian derivative of \(\varphi\) reveals the nature of the critical points.</description><subject>Critical point</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjL0KwjAURoMgWLTvcMG5EJPWdveHDoKLe4l6g6mxqblpoG9vB3F2-uBwzjdjiZByk1W5EAuWErWcc7EtRVHIhJ1PGNECYSBwGsIDoR579FdnzQ326E1UwUQE7TyoTtkxTJzQ6uyl-l8zdCbA3dBzxeZaWcL0u0u2Ph4uuzrrvXsPSKFp3eCnH2qEFJKXeVFJ-Z_1Ae07PjQ</recordid><startdate>20191206</startdate><enddate>20191206</enddate><creator>Arango, Juan</creator><creator>Arbeláez, Hugo</creator><creator>Mejía, Diego</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191206</creationdate><title>Level sets of the Hyperbolic Derivative for analytic self-maps of the unit disk</title><author>Arango, Juan ; Arbeláez, Hugo ; Mejía, Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23230745833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Critical point</topic><toplevel>online_resources</toplevel><creatorcontrib>Arango, Juan</creatorcontrib><creatorcontrib>Arbeláez, Hugo</creatorcontrib><creatorcontrib>Mejía, Diego</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arango, Juan</au><au>Arbeláez, Hugo</au><au>Mejía, Diego</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Level sets of the Hyperbolic Derivative for analytic self-maps of the unit disk</atitle><jtitle>arXiv.org</jtitle><date>2019-12-06</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Let the function \(\varphi\) be holomorphic in the unit disk \(\mathbb{D}\) of the complex plane \(\mathbb{C}\) and let \(\varphi (\mathbb{D})\subset \mathbb{D}\). We study the level sets and the critical points of the hyperbolic derivative of \(\varphi\), $$|D_{\varphi}(z)|:=\frac{(1-|z|^2)|\varphi'(z)|}{1-|\varphi(z)|^2}.$$ In particular, we show how the Schwarzian derivative of \(\varphi\) reveals the nature of the critical points.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2323074583 |
source | Free E- Journals |
subjects | Critical point |
title | Level sets of the Hyperbolic Derivative for analytic self-maps of the unit disk |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A23%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Level%20sets%20of%20the%20Hyperbolic%20Derivative%20for%20analytic%20self-maps%20of%20the%20unit%20disk&rft.jtitle=arXiv.org&rft.au=Arango,%20Juan&rft.date=2019-12-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2323074583%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2323074583&rft_id=info:pmid/&rfr_iscdi=true |