Level sets of the Hyperbolic Derivative for analytic self-maps of the unit disk

Let the function \(\varphi\) be holomorphic in the unit disk \(\mathbb{D}\) of the complex plane \(\mathbb{C}\) and let \(\varphi (\mathbb{D})\subset \mathbb{D}\). We study the level sets and the critical points of the hyperbolic derivative of \(\varphi\), $$|D_{\varphi}(z)|:=\frac{(1-|z|^2)|\varphi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-12
Hauptverfasser: Arango, Juan, Arbeláez, Hugo, Mejía, Diego
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let the function \(\varphi\) be holomorphic in the unit disk \(\mathbb{D}\) of the complex plane \(\mathbb{C}\) and let \(\varphi (\mathbb{D})\subset \mathbb{D}\). We study the level sets and the critical points of the hyperbolic derivative of \(\varphi\), $$|D_{\varphi}(z)|:=\frac{(1-|z|^2)|\varphi'(z)|}{1-|\varphi(z)|^2}.$$ In particular, we show how the Schwarzian derivative of \(\varphi\) reveals the nature of the critical points.
ISSN:2331-8422