2-positive contractive projections on noncommutative \(\mathrm{L}^p\)-spaces

We prove the first theorem on projections on general noncommutative \(\mathrm{L}^p\)-spaces associated with non-type I von Neumann algebras where \(1 \leqslant p < \infty\). This is the first progress on this topic since the seminal work of Arazy and Friedman [Memoirs AMS 1992] where the problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Arhancet, Cédric, Raynaud, Yves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Arhancet, Cédric
Raynaud, Yves
description We prove the first theorem on projections on general noncommutative \(\mathrm{L}^p\)-spaces associated with non-type I von Neumann algebras where \(1 \leqslant p < \infty\). This is the first progress on this topic since the seminal work of Arazy and Friedman [Memoirs AMS 1992] where the problem of the description of contractively complemented subspaces of noncommutative \(\mathrm{L}^p\)-spaces is explicitly raised. We show that the range of a 2-positive contractive projection on an arbitrary noncommutative \(\mathrm{L}^p\)-space is completely order isometrically isomorphic to some noncommutative \(\mathrm{L}^p\)-space. This result is sharp and is even new for Schatten spaces \(S^p\). Our approach relies on non-tracial Haagerup's noncommutative \(\mathrm{L}^p\)-spaces in an essential way, even in the case of a projection acting on a Schatten space and is unrelated to the methods of Arazy and Friedman.
doi_str_mv 10.48550/arxiv.1912.03128
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2323065059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2323065059</sourcerecordid><originalsourceid>FETCH-proquest_journals_23230650593</originalsourceid><addsrcrecordid>eNqNjEELgjAYhkcQJOUP6CZ0qcNs--ZMz1F06NhRkiGLlNzWNiWI_nsi_YBO7wPPw4vQkpI4yTgnW2FfdR_TnEJMGIVsggJgjOIsAZih0LmGEALpDjhnAToDNtrVvu5lVGnlrahGNlY3ckCtXKRVpLSqdNt2Xoy2WBet8Hfbvs-fqyk22BlRSbdA05t4OBn-do5Wx8Nlf8LD27OTzpeN7qwaVAkMGEk54Tn7r_oC6qBEiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2323065059</pqid></control><display><type>article</type><title>2-positive contractive projections on noncommutative \(\mathrm{L}^p\)-spaces</title><source>Free E- Journals</source><creator>Arhancet, Cédric ; Raynaud, Yves</creator><creatorcontrib>Arhancet, Cédric ; Raynaud, Yves</creatorcontrib><description>We prove the first theorem on projections on general noncommutative \(\mathrm{L}^p\)-spaces associated with non-type I von Neumann algebras where \(1 \leqslant p &lt; \infty\). This is the first progress on this topic since the seminal work of Arazy and Friedman [Memoirs AMS 1992] where the problem of the description of contractively complemented subspaces of noncommutative \(\mathrm{L}^p\)-spaces is explicitly raised. We show that the range of a 2-positive contractive projection on an arbitrary noncommutative \(\mathrm{L}^p\)-space is completely order isometrically isomorphic to some noncommutative \(\mathrm{L}^p\)-space. This result is sharp and is even new for Schatten spaces \(S^p\). Our approach relies on non-tracial Haagerup's noncommutative \(\mathrm{L}^p\)-spaces in an essential way, even in the case of a projection acting on a Schatten space and is unrelated to the methods of Arazy and Friedman.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1912.03128</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Subspaces</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27925</link.rule.ids></links><search><creatorcontrib>Arhancet, Cédric</creatorcontrib><creatorcontrib>Raynaud, Yves</creatorcontrib><title>2-positive contractive projections on noncommutative \(\mathrm{L}^p\)-spaces</title><title>arXiv.org</title><description>We prove the first theorem on projections on general noncommutative \(\mathrm{L}^p\)-spaces associated with non-type I von Neumann algebras where \(1 \leqslant p &lt; \infty\). This is the first progress on this topic since the seminal work of Arazy and Friedman [Memoirs AMS 1992] where the problem of the description of contractively complemented subspaces of noncommutative \(\mathrm{L}^p\)-spaces is explicitly raised. We show that the range of a 2-positive contractive projection on an arbitrary noncommutative \(\mathrm{L}^p\)-space is completely order isometrically isomorphic to some noncommutative \(\mathrm{L}^p\)-space. This result is sharp and is even new for Schatten spaces \(S^p\). Our approach relies on non-tracial Haagerup's noncommutative \(\mathrm{L}^p\)-spaces in an essential way, even in the case of a projection acting on a Schatten space and is unrelated to the methods of Arazy and Friedman.</description><subject>Subspaces</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjEELgjAYhkcQJOUP6CZ0qcNs--ZMz1F06NhRkiGLlNzWNiWI_nsi_YBO7wPPw4vQkpI4yTgnW2FfdR_TnEJMGIVsggJgjOIsAZih0LmGEALpDjhnAToDNtrVvu5lVGnlrahGNlY3ckCtXKRVpLSqdNt2Xoy2WBet8Hfbvs-fqyk22BlRSbdA05t4OBn-do5Wx8Nlf8LD27OTzpeN7qwaVAkMGEk54Tn7r_oC6qBEiw</recordid><startdate>20240328</startdate><enddate>20240328</enddate><creator>Arhancet, Cédric</creator><creator>Raynaud, Yves</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240328</creationdate><title>2-positive contractive projections on noncommutative \(\mathrm{L}^p\)-spaces</title><author>Arhancet, Cédric ; Raynaud, Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23230650593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Subspaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Arhancet, Cédric</creatorcontrib><creatorcontrib>Raynaud, Yves</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arhancet, Cédric</au><au>Raynaud, Yves</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>2-positive contractive projections on noncommutative \(\mathrm{L}^p\)-spaces</atitle><jtitle>arXiv.org</jtitle><date>2024-03-28</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We prove the first theorem on projections on general noncommutative \(\mathrm{L}^p\)-spaces associated with non-type I von Neumann algebras where \(1 \leqslant p &lt; \infty\). This is the first progress on this topic since the seminal work of Arazy and Friedman [Memoirs AMS 1992] where the problem of the description of contractively complemented subspaces of noncommutative \(\mathrm{L}^p\)-spaces is explicitly raised. We show that the range of a 2-positive contractive projection on an arbitrary noncommutative \(\mathrm{L}^p\)-space is completely order isometrically isomorphic to some noncommutative \(\mathrm{L}^p\)-space. This result is sharp and is even new for Schatten spaces \(S^p\). Our approach relies on non-tracial Haagerup's noncommutative \(\mathrm{L}^p\)-spaces in an essential way, even in the case of a projection acting on a Schatten space and is unrelated to the methods of Arazy and Friedman.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1912.03128</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2323065059
source Free E- Journals
subjects Subspaces
title 2-positive contractive projections on noncommutative \(\mathrm{L}^p\)-spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=2-positive%20contractive%20projections%20on%20noncommutative%20%5C(%5Cmathrm%7BL%7D%5Ep%5C)-spaces&rft.jtitle=arXiv.org&rft.au=Arhancet,%20C%C3%A9dric&rft.date=2024-03-28&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1912.03128&rft_dat=%3Cproquest%3E2323065059%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2323065059&rft_id=info:pmid/&rfr_iscdi=true