2-positive contractive projections on noncommutative \(\mathrm{L}^p\)-spaces
We prove the first theorem on projections on general noncommutative \(\mathrm{L}^p\)-spaces associated with non-type I von Neumann algebras where \(1 \leqslant p < \infty\). This is the first progress on this topic since the seminal work of Arazy and Friedman [Memoirs AMS 1992] where the problem...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the first theorem on projections on general noncommutative \(\mathrm{L}^p\)-spaces associated with non-type I von Neumann algebras where \(1 \leqslant p < \infty\). This is the first progress on this topic since the seminal work of Arazy and Friedman [Memoirs AMS 1992] where the problem of the description of contractively complemented subspaces of noncommutative \(\mathrm{L}^p\)-spaces is explicitly raised. We show that the range of a 2-positive contractive projection on an arbitrary noncommutative \(\mathrm{L}^p\)-space is completely order isometrically isomorphic to some noncommutative \(\mathrm{L}^p\)-space. This result is sharp and is even new for Schatten spaces \(S^p\). Our approach relies on non-tracial Haagerup's noncommutative \(\mathrm{L}^p\)-spaces in an essential way, even in the case of a projection acting on a Schatten space and is unrelated to the methods of Arazy and Friedman. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1912.03128 |