Affine-null formulation of the gravitational equations: Spherical case

A new evolution algorithm for the characteristic initial value problem based upon an affine parameter rather than the areal radial coordinate used in the Bondi-Sachs formulation is applied in the spherically symmetric case to the gravitational collapse of a massless scalar field. The advantages over...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2019-11, Vol.100 (10), p.1, Article 104017
Hauptverfasser: Crespo, J. A., de Oliveira, H. P., Winicour, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new evolution algorithm for the characteristic initial value problem based upon an affine parameter rather than the areal radial coordinate used in the Bondi-Sachs formulation is applied in the spherically symmetric case to the gravitational collapse of a massless scalar field. The advantages over the Bondi-Sachs version are discussed, with particular emphasis on the application to critical collapse. Unexpected quadratures lead to a simple evolution algorithm based upon ordinary differential equations which can be integrated along the null rays. For collapse to a black hole in a Penrose compactified spacetime, these equations are regularized throughout the exterior and interior of the horizon up to the final singularity. They are implemented as a global numerical evolution code based upon the Galerkin method. New results regarding the global properties of critical collapse are presented.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.100.104017