The spectral properties of the magnetic polarizability tensor for metallic object characterisation

The measurement of time‐harmonic perturbed field data, at a range of frequencies, is beneficial for practical metal detection, where the goal is to locate and identify hidden targets. In particular, these benefits are realised when frequency‐dependent magnetic polarizability tensors (MPTs) are used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2020-01, Vol.43 (1), p.78-113
Hauptverfasser: Ledger, P.D., Lionheart, W.R.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The measurement of time‐harmonic perturbed field data, at a range of frequencies, is beneficial for practical metal detection, where the goal is to locate and identify hidden targets. In particular, these benefits are realised when frequency‐dependent magnetic polarizability tensors (MPTs) are used to provide an economical characterisation of conducting permeable objects, and a dictionary‐based classifier is employed. However, despite the advantages shown in dictionary‐based classifiers, the behaviour of the MPT coefficients with frequency is not properly understood. In this paper, we rigorously analyse, for the first time, the spectral properties of the coefficients of the MPT. This analysis has the potential to improve existing algorithms and design new approaches for object location and identification in metal detection. Our analysis also enables the response transient response from a conducting permeable object to be predicted for more general forms of excitation.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.5830