ψS-orthogonal matrices and ψS-symmetries

Let GLn(C) denote the set of n-by-n nonsingular matrices with entries from the field C of complex numbers. For any S∈GLn(C), define the map ψS:GLn(C)→GLn(C) by ψS(A)=SA−1‾S−1. A matrix A∈GLn(C) is said to be ψS-orthogonal if ψS(A)=A−1. A ψS-orthogonal H is called a ψS-symmetry if rank(H−I)=1. We giv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2020-01, Vol.584, p.185-196
Hauptverfasser: Agapito, Theeex D., Paras, Agnes T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let GLn(C) denote the set of n-by-n nonsingular matrices with entries from the field C of complex numbers. For any S∈GLn(C), define the map ψS:GLn(C)→GLn(C) by ψS(A)=SA−1‾S−1. A matrix A∈GLn(C) is said to be ψS-orthogonal if ψS(A)=A−1. A ψS-orthogonal H is called a ψS-symmetry if rank(H−I)=1. We give conditions on S so that ψS-symmetries exist. Moreover, we determine conditions on S such that the ψS-symmetries generate the ψS-orthogonal matrices, and the minimum number of ψS-symmetries needed to express a ψS-orthogonal.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2019.09.017