ψS-orthogonal matrices and ψS-symmetries
Let GLn(C) denote the set of n-by-n nonsingular matrices with entries from the field C of complex numbers. For any S∈GLn(C), define the map ψS:GLn(C)→GLn(C) by ψS(A)=SA−1‾S−1. A matrix A∈GLn(C) is said to be ψS-orthogonal if ψS(A)=A−1. A ψS-orthogonal H is called a ψS-symmetry if rank(H−I)=1. We giv...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2020-01, Vol.584, p.185-196 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let GLn(C) denote the set of n-by-n nonsingular matrices with entries from the field C of complex numbers. For any S∈GLn(C), define the map ψS:GLn(C)→GLn(C) by ψS(A)=SA−1‾S−1. A matrix A∈GLn(C) is said to be ψS-orthogonal if ψS(A)=A−1. A ψS-orthogonal H is called a ψS-symmetry if rank(H−I)=1. We give conditions on S so that ψS-symmetries exist. Moreover, we determine conditions on S such that the ψS-symmetries generate the ψS-orthogonal matrices, and the minimum number of ψS-symmetries needed to express a ψS-orthogonal. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2019.09.017 |