Divergent shifts in peak photosynthesis timing of temperate and alpine grasslands in China

The changing climate is shifting the seasonality of photosynthesis in vegetation, including the start (SOS), end (EOS), and length (LOS) of the growing season, and the peak photosynthesis timing (PPT). While the SOS, EOS, and LOS have been widely investigated, the PPT of grasslands – as a proxy for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing of environment 2019-11, Vol.233, p.111395, Article 111395
Hauptverfasser: Yang, Jilin, Dong, Jinwei, Xiao, Xiangming, Dai, Junhu, Wu, Chaoyang, Xia, Jianyang, Zhao, Guosong, Zhao, Miaomiao, Li, Zhaolei, Zhang, Yao, Ge, Quansheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The changing climate is shifting the seasonality of photosynthesis in vegetation, including the start (SOS), end (EOS), and length (LOS) of the growing season, and the peak photosynthesis timing (PPT). While the SOS, EOS, and LOS have been widely investigated, the PPT of grasslands – as a proxy for the response of seasonal plant photosynthesis to climate change – has been overlooked. In this study, we propose a hybrid generalized additive model (HGAM) method to extract PPT using the Vegetation Photosynthesis Model (VPM)-based gross primary production (GPP) product, and we examine the dynamics, drivers, and consequences of PPT changes in temperate and alpine grasslands in China over 2000–2016. We found that the PPTs in temperate and alpine grasslands have exhibited advancing (with −0.68 days yr−1, p 
ISSN:0034-4257
1879-0704
DOI:10.1016/j.rse.2019.111395