A Truncated Theta Identity of Gauss and Overpartitions into Odd Parts
We examine two truncated series derived from a classical theta identity of Gauss. As a consequence, we obtain two infinite families of inequalities for the overpartition function p o ¯ ( n ) counting the number of overpartitions into odd parts. We provide partition-theoretic interpretations of these...
Gespeichert in:
Veröffentlicht in: | Annals of combinatorics 2019-11, Vol.23 (3-4), p.907-915 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We examine two truncated series derived from a classical theta identity of Gauss. As a consequence, we obtain two infinite families of inequalities for the overpartition function
p
o
¯
(
n
)
counting the number of overpartitions into odd parts. We provide partition-theoretic interpretations of these results. |
---|---|
ISSN: | 0218-0006 0219-3094 |
DOI: | 10.1007/s00026-019-00442-x |