A Truncated Theta Identity of Gauss and Overpartitions into Odd Parts

We examine two truncated series derived from a classical theta identity of Gauss. As a consequence, we obtain two infinite families of inequalities for the overpartition function p o ¯ ( n ) counting the number of overpartitions into odd parts. We provide partition-theoretic interpretations of these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of combinatorics 2019-11, Vol.23 (3-4), p.907-915
Hauptverfasser: Merca, Mircea, Wang, Chun, Yee, Ae Ja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We examine two truncated series derived from a classical theta identity of Gauss. As a consequence, we obtain two infinite families of inequalities for the overpartition function p o ¯ ( n ) counting the number of overpartitions into odd parts. We provide partition-theoretic interpretations of these results.
ISSN:0218-0006
0219-3094
DOI:10.1007/s00026-019-00442-x