Monitoring spatio-temporal dynamics of urban and peri-urban land transitions using ensemble of remote sensing spectral indices—a case study of Chennai Metropolitan Area, India

Land-use/land-cover change is the most vulnerable factor in any developing urban environment. Increased infrastructure and population density tend to alter the land features which in turn will have an impact on climate change and will increase the impervious layer. Study of trends in land-use/land-c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental monitoring and assessment 2020-01, Vol.192 (1), p.15, Article 15
Hauptverfasser: M, Mathan, M, Krishnaveni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Land-use/land-cover change is the most vulnerable factor in any developing urban environment. Increased infrastructure and population density tend to alter the land features which in turn will have an impact on climate change and will increase the impervious layer. Study of trends in land-use/land-cover change is required for analyzing the possible ways of managing the natural system. In this study, the spatial and temporal changes of the urban and peri-urban landscape of the Chennai Metropolitan Area (CMA), Tamil Nadu, India, were analyzed using satellite images. Imageries from Landsat 5 (TM) and Landsat 8 (OLI/TIRS) sensors were taken for the years 1988, 1997, 2006, and 2017. Ensembles of remote sensing spectral indices (NDVI, MNDWI, NDBI, and NDBaI) were calculated for the land-use/land-cover classification. The confusion matrix was used for assessing the accuracy for the year 2017. The overall accuracy of the LULC classification obtained was 91.76% with the kappa coefficient of 0.84. The results show that during the period of February 1988 to February 2017, the agriculture/fallow land, barren/semi-barren, vegetation, and water bodies/wetlands have decreased by 53.62%, 1.45%, 58.99%, and 30.59%, respectively. This decrease has contributed to an increase of 173.83% in built-up area. About 26,881 ha of agriculture/fallow land, 10,482 ha of vegetation land, and 2454 ha of water bodies/wetlands were converted to built-up and other land-use over the period. This essentially meant that CMA has changed from predominantly an agricultural area (42.21%) in 1988 to built-up area (48.72%) in 2017.
ISSN:0167-6369
1573-2959
DOI:10.1007/s10661-019-7986-y