Theory of Multidimensional Delsarte–Lions Transmutation Operators. II

The differential-geometric and topological structures related to the Delsarte transmutation operators and the Gelfand–Levitan–Marchenko equations that describe these operators are studied by using suitable differential de Rham–Hodge–Skrypnik complexes. The correspondence between the spectral theory...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ukrainian mathematical journal 2019-11, Vol.71 (6), p.921-955
Hauptverfasser: Samoilenko, A. M., Prykarpatsky, Ya. A., Blackmore, D., Prykarpatsky, A. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The differential-geometric and topological structures related to the Delsarte transmutation operators and the Gelfand–Levitan–Marchenko equations that describe these operators are studied by using suitable differential de Rham–Hodge–Skrypnik complexes. The correspondence between the spectral theory and special Berezansky-type congruence properties of the Delsarte transmutation operators is established. Some applications to multidimensional differential operators are presented, including the three-dimensional Laplace operator, the two-dimensional classical Dirac operator, and its multidimensional affine extension associated with self-dual Yang–Mills equations. The soliton solutions are discussed for a certain class of dynamical systems.
ISSN:0041-5995
1573-9376
DOI:10.1007/s11253-019-01689-6