Finite Speed of Propagation for the Thin-Film Equation in Spherical Geometry

We show that a doubly degenerate thin-film equation obtained in modeling the flows of viscous coatings on spherical surfaces has a finite speed of propagation for nonnegative strong solutions and, hence, there exists an interface or a free boundary separating the regions, where the solution u > 0...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ukrainian mathematical journal 2019-11, Vol.71 (6), p.956-969
1. Verfasser: Taranets, R. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that a doubly degenerate thin-film equation obtained in modeling the flows of viscous coatings on spherical surfaces has a finite speed of propagation for nonnegative strong solutions and, hence, there exists an interface or a free boundary separating the regions, where the solution u > 0 and u = 0 . By using local entropy estimates, we also establish the upper bound for the rate of propagation of the interface.
ISSN:0041-5995
1573-9376
DOI:10.1007/s11253-019-01690-z