Finite Speed of Propagation for the Thin-Film Equation in Spherical Geometry
We show that a doubly degenerate thin-film equation obtained in modeling the flows of viscous coatings on spherical surfaces has a finite speed of propagation for nonnegative strong solutions and, hence, there exists an interface or a free boundary separating the regions, where the solution u > 0...
Gespeichert in:
Veröffentlicht in: | Ukrainian mathematical journal 2019-11, Vol.71 (6), p.956-969 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that a doubly degenerate thin-film equation obtained in modeling the flows of viscous coatings on spherical surfaces has a finite speed of propagation for nonnegative strong solutions and, hence, there exists an interface or a free boundary separating the regions, where the solution
u >
0 and
u
= 0
.
By using local entropy estimates, we also establish the upper bound for the rate of propagation of the interface. |
---|---|
ISSN: | 0041-5995 1573-9376 |
DOI: | 10.1007/s11253-019-01690-z |