On Row-Sum Majorization

Let M n , m be the set of all n × m real or complex matrices. For A, B ∈ M n , m , we say that A is row-sum majorized by B (written as A ≺ rs B ) if R ( A ) ≺ R ( B ), where R ( A ) is the row sum vector of A and ≺ is the classical majorization on ℝ n . In the present paper, the structure of all lin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Czechoslovak Mathematical Journal 2019-12, Vol.69 (4), p.1111-1121
Hauptverfasser: Akbarzadeh, Farzaneh, Armandnejad, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1121
container_issue 4
container_start_page 1111
container_title Czechoslovak Mathematical Journal
container_volume 69
creator Akbarzadeh, Farzaneh
Armandnejad, Ali
description Let M n , m be the set of all n × m real or complex matrices. For A, B ∈ M n , m , we say that A is row-sum majorized by B (written as A ≺ rs B ) if R ( A ) ≺ R ( B ), where R ( A ) is the row sum vector of A and ≺ is the classical majorization on ℝ n . In the present paper, the structure of all linear operators T : M n , m → M n , m preserving or strongly preserving row-sum majorization is characterized. Also we consider the concepts of even and circulant majorization on ℝ n and then find the linear preservers of row-sum majorization of these relations on M n , m .
doi_str_mv 10.21136/CMJ.2019.0084-18
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2322182247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322182247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-919ca9d405cb4548a0cc813493ea6093d22941c1356ab850c45d7075f6392bd3</originalsourceid><addsrcrecordid>eNp1j8FLwzAUh4MoWKdn8Tbw3PreS9ImRyk6lY2B7h7StJUW186kRfSvt3OCJ0_v8v2-x8fYFUJCiDy9yVdPCQHqBECJGNURi1BmFGsUeMwiAMRYpIJO2VkILQBwFCpil-tu_tx_xC_jdr6ybe-bLzs0fXfOTmr7FqqL3ztjm_u7Tf4QL9eLx_x2GTsu9TDZtbO6FCBdIaRQFpxTyIXmlU1B85JIC3TIZWoLJcEJWWaQyTrlmoqSz9j1Qbvz_ftYhcG0_ei76aMhToSKSGQThQfK-T4EX9Vm55ut9Z8Gwfzkmynf7PPNPt-gmjZ02ISJ7V4r_2f-f_QN7otZcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322182247</pqid></control><display><type>article</type><title>On Row-Sum Majorization</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Akbarzadeh, Farzaneh ; Armandnejad, Ali</creator><creatorcontrib>Akbarzadeh, Farzaneh ; Armandnejad, Ali</creatorcontrib><description>Let M n , m be the set of all n × m real or complex matrices. For A, B ∈ M n , m , we say that A is row-sum majorized by B (written as A ≺ rs B ) if R ( A ) ≺ R ( B ), where R ( A ) is the row sum vector of A and ≺ is the classical majorization on ℝ n . In the present paper, the structure of all linear operators T : M n , m → M n , m preserving or strongly preserving row-sum majorization is characterized. Also we consider the concepts of even and circulant majorization on ℝ n and then find the linear preservers of row-sum majorization of these relations on M n , m .</description><identifier>ISSN: 0011-4642</identifier><identifier>EISSN: 1572-9141</identifier><identifier>DOI: 10.21136/CMJ.2019.0084-18</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Convex and Discrete Geometry ; Linear operators ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations</subject><ispartof>Czechoslovak Mathematical Journal, 2019-12, Vol.69 (4), p.1111-1121</ispartof><rights>Mathematical Institute, Academy of Sciences of Cz 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-919ca9d405cb4548a0cc813493ea6093d22941c1356ab850c45d7075f6392bd3</citedby><cites>FETCH-LOGICAL-c359t-919ca9d405cb4548a0cc813493ea6093d22941c1356ab850c45d7075f6392bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.21136/CMJ.2019.0084-18$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.21136/CMJ.2019.0084-18$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Akbarzadeh, Farzaneh</creatorcontrib><creatorcontrib>Armandnejad, Ali</creatorcontrib><title>On Row-Sum Majorization</title><title>Czechoslovak Mathematical Journal</title><addtitle>Czech Math J</addtitle><description>Let M n , m be the set of all n × m real or complex matrices. For A, B ∈ M n , m , we say that A is row-sum majorized by B (written as A ≺ rs B ) if R ( A ) ≺ R ( B ), where R ( A ) is the row sum vector of A and ≺ is the classical majorization on ℝ n . In the present paper, the structure of all linear operators T : M n , m → M n , m preserving or strongly preserving row-sum majorization is characterized. Also we consider the concepts of even and circulant majorization on ℝ n and then find the linear preservers of row-sum majorization of these relations on M n , m .</description><subject>Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Linear operators</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><issn>0011-4642</issn><issn>1572-9141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1j8FLwzAUh4MoWKdn8Tbw3PreS9ImRyk6lY2B7h7StJUW186kRfSvt3OCJ0_v8v2-x8fYFUJCiDy9yVdPCQHqBECJGNURi1BmFGsUeMwiAMRYpIJO2VkILQBwFCpil-tu_tx_xC_jdr6ybe-bLzs0fXfOTmr7FqqL3ztjm_u7Tf4QL9eLx_x2GTsu9TDZtbO6FCBdIaRQFpxTyIXmlU1B85JIC3TIZWoLJcEJWWaQyTrlmoqSz9j1Qbvz_ftYhcG0_ei76aMhToSKSGQThQfK-T4EX9Vm55ut9Z8Gwfzkmynf7PPNPt-gmjZ02ISJ7V4r_2f-f_QN7otZcw</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Akbarzadeh, Farzaneh</creator><creator>Armandnejad, Ali</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191201</creationdate><title>On Row-Sum Majorization</title><author>Akbarzadeh, Farzaneh ; Armandnejad, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-919ca9d405cb4548a0cc813493ea6093d22941c1356ab850c45d7075f6392bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Linear operators</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akbarzadeh, Farzaneh</creatorcontrib><creatorcontrib>Armandnejad, Ali</creatorcontrib><collection>CrossRef</collection><jtitle>Czechoslovak Mathematical Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akbarzadeh, Farzaneh</au><au>Armandnejad, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Row-Sum Majorization</atitle><jtitle>Czechoslovak Mathematical Journal</jtitle><stitle>Czech Math J</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>69</volume><issue>4</issue><spage>1111</spage><epage>1121</epage><pages>1111-1121</pages><issn>0011-4642</issn><eissn>1572-9141</eissn><abstract>Let M n , m be the set of all n × m real or complex matrices. For A, B ∈ M n , m , we say that A is row-sum majorized by B (written as A ≺ rs B ) if R ( A ) ≺ R ( B ), where R ( A ) is the row sum vector of A and ≺ is the classical majorization on ℝ n . In the present paper, the structure of all linear operators T : M n , m → M n , m preserving or strongly preserving row-sum majorization is characterized. Also we consider the concepts of even and circulant majorization on ℝ n and then find the linear preservers of row-sum majorization of these relations on M n , m .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.21136/CMJ.2019.0084-18</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0011-4642
ispartof Czechoslovak Mathematical Journal, 2019-12, Vol.69 (4), p.1111-1121
issn 0011-4642
1572-9141
language eng
recordid cdi_proquest_journals_2322182247
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Analysis
Convex and Discrete Geometry
Linear operators
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
title On Row-Sum Majorization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A43%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Row-Sum%20Majorization&rft.jtitle=Czechoslovak%20Mathematical%20Journal&rft.au=Akbarzadeh,%20Farzaneh&rft.date=2019-12-01&rft.volume=69&rft.issue=4&rft.spage=1111&rft.epage=1121&rft.pages=1111-1121&rft.issn=0011-4642&rft.eissn=1572-9141&rft_id=info:doi/10.21136/CMJ.2019.0084-18&rft_dat=%3Cproquest_cross%3E2322182247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322182247&rft_id=info:pmid/&rfr_iscdi=true