On Row-Sum Majorization
Let M n , m be the set of all n × m real or complex matrices. For A, B ∈ M n , m , we say that A is row-sum majorized by B (written as A ≺ rs B ) if R ( A ) ≺ R ( B ), where R ( A ) is the row sum vector of A and ≺ is the classical majorization on ℝ n . In the present paper, the structure of all lin...
Gespeichert in:
Veröffentlicht in: | Czechoslovak Mathematical Journal 2019-12, Vol.69 (4), p.1111-1121 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
M
n
,
m
be the set of all
n
×
m
real or complex matrices. For
A, B
∈
M
n
,
m
, we say that
A
is row-sum majorized by
B
(written as
A
≺
rs
B
) if
R
(
A
) ≺
R
(
B
), where
R
(
A
) is the row sum vector of
A
and ≺ is the classical majorization on ℝ
n
. In the present paper, the structure of all linear operators
T
:
M
n
,
m
→
M
n
,
m
preserving or strongly preserving row-sum majorization is characterized. Also we consider the concepts of even and circulant majorization on ℝ
n
and then find the linear preservers of row-sum majorization of these relations on
M
n
,
m
. |
---|---|
ISSN: | 0011-4642 1572-9141 |
DOI: | 10.21136/CMJ.2019.0084-18 |