Similarity Estimation for Large-Scale Human Action Video Data on Spark

The amount of human action video data is increasing rapidly due to the growth of multimedia data, which increases the problem of how to process the large number of human action videos efficiently. Therefore, we devise a novel approach for human action similarity estimation in the distributed environ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2018-05, Vol.8 (5), p.778
Hauptverfasser: Xu, Weihua, Uddin, Md, Dolgorsuren, Batjargal, Akhond, Mostafijur, Khan, Kifayat, Hossain, Md, Lee, Young-Koo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The amount of human action video data is increasing rapidly due to the growth of multimedia data, which increases the problem of how to process the large number of human action videos efficiently. Therefore, we devise a novel approach for human action similarity estimation in the distributed environment. The efficiency of human action similarity estimation depends on feature descriptors. Existing feature descriptors such as Local Binary Pattern and Local Ternary Pattern can only extract texture information but cannot obtain the object shape information. To resolve this, we introduce a new feature descriptor, namely Edge based Local Pattern descriptor (ELP). ELP can extract object shape information besides texture information and ELP can also deal with intensity fluctuations. Moreover, we explore Apache Spark to perform feature extraction in the distributed environment. Finally, we present an empirical scalability evaluation of the task of extracting features from video datasets.
ISSN:2076-3417
2076-3417
DOI:10.3390/app8050778