Catalyst-free growth of two-dimensional hexagonal boron nitride few-layers on sapphire for deep ultraviolet photodetectors
Two-dimensional (2D) hexagonal boron nitride (h-BN) is a promising candidate as a supporting substrate, a gate dielectric and a protecting layer for 2D electronic and photonic devices. Transition metals were usually adopted as substrates for the synthesis of 2D h-BN, however, catalyst-free growth of...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2019, Vol.7 (47), p.14999-156 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two-dimensional (2D) hexagonal boron nitride (h-BN) is a promising candidate as a supporting substrate, a gate dielectric and a protecting layer for 2D electronic and photonic devices. Transition metals were usually adopted as substrates for the synthesis of 2D h-BN, however, catalyst-free growth of high-quality h-BN on dielectric substrates is still very challenging. Herein, we report the catalyst-free growth of 2D h-BN few-layers on sapphire substrates by ion beam sputtering deposition (IBSD). We find that the h-BN grown under conventional conditions is nonstoichiometric with an excess of B element, resulting in a large number of N vacancy defects and poor crystalline quality. The wafer-scale high quality 2D h-BN layers were synthesized on sapphire by the combination of surface nitridation and N
+
sputtering. Furthermore, the 2D h-BN few-layers on sapphire were used to fabricate deep ultraviolet photodetectors, which exhibit better performance in comparison with the devices fabricated by the transferred h-BN.
Catalyst-free growth of wafer-scale h-BN few-layers is realized on sapphire substrates by the combination of surface nitridation and N
+
sputtering. |
---|---|
ISSN: | 2050-7526 2050-7534 |
DOI: | 10.1039/c9tc05206b |