Microstructure Induced Rigidity of Polysiloxane Yielding Hierarchical Self‐Assembly of Alkyl Side Chains
The influence of a backbone microstructure on the side chain crystallization of a comb‐like polymer is analyzed systematically using a tailor‐made random versus block siloxane copolymer system. While the side alkyl chains of the random siloxane undergo a stepwise order–disorder (OD) transition to fo...
Gespeichert in:
Veröffentlicht in: | Macromolecular chemistry and physics 2019-12, Vol.220 (23), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The influence of a backbone microstructure on the side chain crystallization of a comb‐like polymer is analyzed systematically using a tailor‐made random versus block siloxane copolymer system. While the side alkyl chains of the random siloxane undergo a stepwise order–disorder (OD) transition to form well‐ordered orthorhombic structure at low temperature, the packing structure of the alkyl chains pertaining to the block siloxane maintains their original hexagonal lattice up to a temperature of as low as 173 K. The unit lattice ordering of side alkyl chains in the random siloxane polymer is also accompanied by a major restructuring of the backbone conformation ultimately losing out long range ordered structure in the solid state. The OD transitions of side alkyl chains and their dynamic relationship with the backbone conformation are established unambiguously by a combination of temperature dependent small‐angle X‐ray and wide‐angle X‐ray scattering techniques. The observed conformational variations in random versus block polymers are explicitly discussed in terms of molecular chain mobility and theory of macromolecular chain conformation.
How controlling the backbone microstructure reinforces the structural stability of alkyl polysiloxane is unveiled. The discovery that the induced rigidity in the block copolymer refrains the alkyl chains from undergoing a polymorphic change unlike its random counterpart, relates to the fundamental aspect of backbone flexibility on side chain crystallization. |
---|---|
ISSN: | 1022-1352 1521-3935 |
DOI: | 10.1002/macp.201900408 |